New to Meducation?
Sign up
Already signed up? Log In
view moderators

InvestigativeTechniques

Category

Preview
1
2

What would an environmentally sustainable reproductive technology industry look like?

Stream What would an environmentally sustainable reproductive technology industry look like? by BMJ talk medicine from desktop or your mobile device  
SoundCloud
over 4 years ago
Preview
1
14

CT perfusion-guided patient selection for endovascular treatment of acute ischemic stroke

Stream CT perfusion-guided patient selection for endovascular treatment of acute ischemic stroke by BMJ talk medicine from desktop or your mobile device  
SoundCloud
over 4 years ago
Preview
1
4

CDIS 2014: The Yale-UCL Research and Device Evaluation Program: A trans atlantic academic initiative

Stream CDIS 2014: The Yale-UCL Research and Device Evaluation Program: A trans atlantic academic initiative by BMJ talk medicine from desktop or your mobile device  
SoundCloud
over 4 years ago
Preview
1
8

CDIS 2014: Preclinical evaluation case examples: How pathologists can streamline device development

Stream CDIS 2014: Preclinical evaluation case examples: How pathologists can streamline device development by BMJ talk medicine from desktop or your mobile device  
SoundCloud
over 4 years ago
Preview
1
28

Nasogastric Intubation: Overview, Periprocedural Care, Technique

Gastric intubation via the nasal passage (ie, nasogastric route) is a common procedure that provides access to the stomach for diagnostic and therapeutic purposes. A nasogastric (NG) tube is used for the procedure.  
emedicine.medscape.com
over 4 years ago
Preview
1
17

Clinical Methods, 3rd edition: Chapter 35 An Overview of the Pulmonary System

Hello,We facilitate the provision of independent analysis to support expert testimony, regulatory or legislative engagements. Frequently, this work includes economic, financial and statistical studies of varying data analysis, technical and http://www.stlouisbridal.com.  
clinicalmethods.blogspot.co.uk
over 4 years ago
Preview
1
52

Atrial Fibrillation (AF). Doctor's Guide; AF Decision Aid | Patient

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Find out more information about the condition AF and what treatment options are available.  
Patient.co.uk
over 4 years ago
Preview
1
55

MAZE Procedure for Treatment of Atrial Fibrillation

MAZE Procedure for Treatment of Atrial Fibrillation  
cts.usc.edu
over 4 years ago
Preview
1
33

Are anti-smoking measures working? - BBC News

The UK has some of the strongest smoking legislation in the world. But do we know what impact they have had on smoking rates?  
BBC News
over 4 years ago
Www.bmj
1
23

Clinical applications of preimplantation genetic testing

Genetic diagnostic technologies are rapidly changing the way medicine is practiced. Preimplantation genetic testing is a well established application of genetic testing within the context of in vitro fertilization cycles. It involves obtaining a cell(s) from a developing embryo in culture, which is then subjected to genetic diagnostic analysis; the resulting information is used to guide which embryos are transferred into the uterus. The potential applications and use of this technology have increased in recent years. Experts agree that preimplantation genetic diagnosis is clinically appropriate for many known genetic disorders. However, some applications of such testing, such as preimplantation genetic screening for aneuploidy, remain controversial. Clinical data suggest that preimplantation genetic screening may be useful, but further studies are needed to quantify the size of the effect and who would benefit most.  
bmj.com
over 4 years ago
Preview
1
6

Is animal research sufficiently evidence based to be a cornerstone of biomedical research?

Public acceptance of the use of animals in biomedical research is conditional on it producing benefits for humans. Pandora Pound and Michael Bracken argue that the benefits remain unproved and may divert funds from research that is more relevant to doctors and their patients  
bmj.com
over 4 years ago
Preview
1
11

California measure would require porn actors to use condoms

AIDS activists have filed a ballot measure with the US state of California that would require performers in adult films to wear condoms during “all acts of vaginal or anal intercourse during the production of adult films.”  
bmj.com
over 4 years ago
7
0
9

What are some possible surgical procedures for bronchiectasis?

For a female 45yrs with lower lobes in left lung.  
Donna Thompson
over 6 years ago
%3fr=0
8
503

Video Animation In Medical Education

Introduction This post describe the creation of a Stroke Summary video. The aim of this project was to assess the attitudes of medical students towards the use of video animation in medical education. An educational tutorial was produced outlining the basic principles of stroke. This aimed to provide a summary of different aspects relating to stroke, outlined in the Bristol University curriculum. This intended to be a short, concise animation covering stroke presentation, definition and recognition, with an overview of the blood supply to the brain and the classification of stroke presentation used in clinical practice. This was followed by some key facts and a summary of different management stages. After the video animation was produced an assessment of student’s attitudes using an online questionnaire was undertaken. This consisted of ten short questions and an open text feedback for additional comments. The video was then edited with reference to feedback given by students and the results analysed. This report will outline relevant research and project work that lead to this assignment being undertaken. A description of the method followed to generate the video animation and to collect feedback on students will be outlined followed by analysis of results. This will then be discussed in relation to previous work and research. Background There are a number of reasons this project has been undertaken. On a personal level, I have a long-standing interest in teaching and medical education. As part of a previous project I created a series of audio tutorials in cardiovascular medicine and assessed student attitudes to audio learning. The findings of this report showed that a large number of students found these audio tutorials useful and would like more of these available to supplement their learning. One of the questions given to students at this time assessed how useful they found different types of educational material. This project showed students reporting audio tutorials more useful than previously thought, while also reporting that they were not readily available. Although a video tutorial was not provided to them at this time, feedback questions assessed attitudes to video tutorials as a learning resource. Students reported low availability and felt they would be more useful than audio tutorials. Some results from this project are shown in figure 1. Figure 1. Results from previous research by Buick (2007), showing attitudes of students towards different learning tutorials. The majority of students report audio tutorials to be ‘quite useful’ or ‘very useful’. Video tutorials are thought by students to be more useful that audio tutorials, however there is a large proportion that do not have access to these learning resources. As a number of students reported an inability to access to video tutorials, it was thought that creating a video animation tutorial followed by assessing students attitudes would be a useful follow up project. If this is found to be a useful resource, other students may generate video tutorials in the future. Therefore student feedback also assessed attitudes towards authenticity, relating to who generates the tutorial and whether they find the ability to feedback a useful tool. Medical education is widely researched globally, although it is not often a consideration for those studying medicine. Those involved in teaching and educating future doctors have looked at different methods of passing on knowledge. A high quality medical education given to future healthcare professionals is important. It is widely accepted that a better knowledge results in better care for patients and education is at the centre of any healthcare system. This is reflected in the cost of educating medical students and training doctors in the UK. In the 1997 it was reported by the Department of Health that estimates of 200 million pounds would be spent per year for an increase in 1000 medical students being trained in the UK. This suggests that the cost of training a medical student is in the region of £200,0001. Medical education in the UK is split in two halves, with undergraduate and postgraduate training. The Department of Health has recently invested millions of pounds into the development of online tutorials for postgraduate training posts in a number of different specialities. Justification for is given by reducing the cost of training through the use of standardised online tutorials. This will be a more cost effective method than the standard in hospital teaching. This approach has not been undertaken for undergraduate medical education. Universities are seen as primarily responsible for undergraduate training. Many of these institutions have used the Internet to aid teaching and have produced video tutorials. However, as reflected in the previous project (Buick, 2007), resources are often limited and students do not feel they have ready access to these educational tutorials. The benefits of different types of learning resource have been researched. These include online audio downloads (Spickard et al, 2004), practice exam questions and interactive tutorials (Hudsen, 2004). Research showing the benefit of video was shown by Balslev et al (2005) comparing video and written text while teaching a patient case. Balsley et al (2005) found those who learnt using a video presentation rather than those given written text showed a significant increase in data exploration, theory evaluation and exploration. However, there is little research looking specifically at video animation for explaining conditions. Animation software is now available on personal computers and is also possible using Microsoft PowerPointTM, which is the most widely used presentation software. It is clear that recent trends show training can benefit from this type of learning resource. Generation of high quality video tutorials can help students learn while reducing the cost of training. It is for this reason that more material is likely to become available, either from funded production supported by external organisations or by the trainers and trainees themselves who have technology able to produce material such as this on their home computer. Ethical and Legal Issues During the development of this video some ethical and legal issues arose that had to be addressed before a final video could be made. When considering what imagery would be used in the video, I wanted to include pictures of clinical signs relevant to the audio narration. However, taking images from the Internet without prior consent was not thought to be ethical and therefore clinical signs were displayed graphically through drawings and diagrams. Plagiarism and copyright were some of the legal issues surrounding the presentation of medical information. Narrated information was generated using a number of information sources, none of which were exclusively quoted. Therefore an end reference list was generated showing all supporting information sources. Images used in the animation were either self generated or taken from sources such as Wikipedia.org. This resource supplies images under a free software license such as GNU general public license2. This allows anyone to freely use and edit images while referencing the original source. Skills Needed To Develop This Video Animation To generate the video a number I had to develop a number of new skills. Unlike previous work that had been undertaken this media was generated using animation software. To use this effectively I had to research the different functions that were available. To do this I combined reading books aimed to teach beginners such as Macromedia Flash 8 for Dummies (Ellen Finkelstein and Gurdy Leete, 2006) and online sources such as www.learnflash.com . To generate voice narration, another program was used that allowed editing and splicing of audio tracks. This was then split up into a number of narrated sections and added to the animation. Method Script To produce the tutorial the first stage was to construct a script for narration. This involved outlining the areas to be covered. The main headings used were: Stroke definition This gave a clinical definition and a lay person recognition mnemonic called FAST which is used to help members of the general public recognise stroke. Pathophysiology This covered blood supply to the brain. This combined diagrams of the circle of Willis, with images of the brain. Arterial blood supply were then displayed over the brain images while relating this to the arterial vessels leaving the circle of Willis Classification Students at Bristol university are asked to understand the Oxford / Bamford classification. This was covered in detail with explanations of clinical signs that may be seen and graphical representation of these. Prevalence This section covered prevalence, national impact and cost of stroke in the UK. Management In this section management was split up it to immediate management, medical management, in hospital care and some of the procedures considered for different cases. Risk factors for stroke and research into this was also written up and narrated. However at a later stage this was not included due to time constraints and video length. Narration An audio narration was generated using software called ‘Garage Band’ which allows audio tracks to be recorded and edited. The narration was exported in 45 sections so that this could then be added to the animation at relevant points. Animation The animation was made using Adobe Flash. This software is used for making websites and animations used for Internet adverts. It has the facility to export as a ‘flash video format’, which can then be played using a media player online. This software generates animation by allowing objects to be drawn on a stage and moved around using command lines and tools. This was used as it has the ability to animate objects and add audio narration. It also is designed for exporting animations to the Internet allowing the material to be accessed by a large number of people. Feedback A short questionnaire was generated which consisted of ten questions and placed online using a survey collection website (www.surveymonkey.com). Students were directed to the feedback questionnaire and allowed to submit this anonymously. Adapting the tutorial Some feedback constructively suggested changes that could be made. The video was updated after some concern about the speed of narration and that some of the narrative sections seemed to overlap. Analysis and Report The results of the feedback were then collected and displayed in a table. This was then added to the report and discussed with reference to research and previous project work. Results Students were allowed to access to the video animation through the Internet. After uploading the video an email was sent to students studying COMP2 at Bristol University. These students are required to know about aspects of stroke covered in this tutorial to pass this section of the course. The email notified them of the options to view the tutorial and how to give feedback. In total 30 students completed the feedback questionnaire and out of these 4 students provided optional written feedback. The results to the questions given were generally very positive. The majority of students showed a strong preference to video animations as a useful tool in medical education. The results are displayed in Table 1 below. TABLE 1 shows the ten question asked of the students and to what extent they agreed with each statement. Results are given in the percentage of students who chose the relevant category. Written Feedback Four written comments were made: "Really useful presentation!! Would be much better if someone proof read the whole thing as there are some spelling mistakes; also if the pauses between facts were longer it would be more easier to take in some facts. Overall, really nicely done!!" "Some of speech went too quickly, but good overall" "Very clearly written with excellent use of images to match the text and commentary!" "The Video was excellent." Discussion Student attitudes to this video tutorial were very positive. This was in contrast to the attitudes previously shown in the audio tutorial project (Buick, 2007) where video tutorials were not thought to be a useful resource. These results support recent developments in the generation of online video training for doctors by the Department of Health and previous research by Balsley et al (2005). Question one showed that the majority of students strongly agreed that the stroke video would be a useful resource. Questions two, three and four aimed to establish what aspects of a disease were best outlined using a video animation. Results showed that students agree or strongly agreed that defining the condition, pathophysiology and management were all well explained in this format. Interestingly, a large majority of students (70%) felt pathophysiology was best represented kinaesthetically. This may be due to the visual aspect that can be associated with pathophysiology. Disease processes are often represented using diagrams in textbooks with text explaining the disease process. Using computer technology it is possible to turn the text into audio narration and allow the user to view dynamic diagrams. In this way, students can better conceptualise the disease process, facilitating a more complete understanding of disease and its clinical manifestations. Question five aimed to highlight the benefit of visual stimulation as well as audio narration as a positive learning method. All students agreed or strongly agreed that the combination of these two aspects was beneficial. Question six showed a very strong response from students wanting access to more video tutorials, with 70% of students strongly agreeing to this statement. It is often the case that students take part in generating teaching material, and some students may be concerned that this material is inaccurate. However, many students do not think that this is a significant problem. This is reflected by the spread of student’s opinion seen in question 7, where there was no clear consensus of opinion. It may be that as students learn from a number of different resources, that any inaccuracies will be revealed and perhaps stimulate a better understanding through the process of verifying correct answers and practicing evidence based medicine. Question nine and ten show that most students value resources that allow sharing of educational material and feel they could help others learn. They would also value the option to feedback on this material. The written feedback showed positive responses from students. However there was feedback on some aspects of the video that they felt could be changed. The narration was delivered quickly with few gaps between statements to keep the tutorial short and concise, however this was thought to be distracting and made it less easy to follow. Following this feedback the narration was changed and placed back on the Internet for others to review. Further research and investigation could include the generation of a larger resource of video animations. My research has suggested that using animation to cover pathophysiology may be most beneficial. The software used to make this video also allows for the incorporation of interactive elements. The video produced in this project or other videos could have online menus, allowing users to select which part of the tutorial they wish to view rather than having to watch the whole animation, or they include interactive questions. Reflections Strength and weaknesses Strengths of this project include its unique approach to medical education. There have been few animated videos produced for undergraduate medical students that use this advanced software. This software is used by professional web developers but can be used effectively by students and doctors for educational purposes to produce video animation and interactive tutorials. For these reasons, I passionately believe that this technology could be used to revolutionise the way students learn medicine. If done effectively this could provide a more cost effective and engaging learning experience. This will ultimately benefit patients and doctors alike. This material can be place online allowing remote access. This is increasingly important for medical students studying on placements who are often learning away from the university setting. Weaknesses of this project include that of the work intensity of generating animated video. It is estimated that it takes around 6 to 9 hours to produce a minute of animated video. This does not include the research and recording of narration. The total sum of time to generate material and the additional skills needed to use the software makes generation of larger numbers of videos not possible by a small community of learners such as a university. Although it was done in this case, it is difficult to edit the material after it has been created. This may mean that material will become inaccurate when new advances occur. The feedback sample collected was opportunistic and the response rate was low. These factors may bias the results as only a subsection of opinions may have been obtained. These opinions may not be representative of the population studied or generalisable to them. It was difficult obtaining a professional medical opinion about the video in the time that I was allocated. However this has been organised for a later time. Knowledge and skills gained During this project I was able to learn about stroke its presentation, classification, management and risk factors. I read texts, which summarised stroke and research into risk factors and management of stroke. The challenge of usefully condensing a subject into a short educational tutorial was a challenging one. I feel I improved my skills of summarising information effectively. I gained knowledge of some of the challenges of undertaking a project such as this. One of the largest challenges included how long it took to produce the animation. In the future I will be aware of these difficulties and allow for time to gather information and generate the material. I also learnt the benefit of gaining feedback and allowing for adaption to this. It took more time to respond to feedback but this resulted in a better product that other students can use. I also reflected on the impact of stroke itself. Stroke has a major impact on patients, health care and carers. Much can be done in the recognition classification and management. A better understanding benefits all areas and I have gained a better knowledge and the importance of helping others gain a good understanding of stroke. I learned how to generate a video animation for the use of teaching in medicine and combine this with audio presentation. I learned how long it can take to generate material like this and the skill of organising my time effectively to manage a project. I can use this skill in the future to produce more educational material to help teach during my medical career. I also gained skills in learning how to place material on the Internet for others to access and will also use this in the future. Conclusions Previously evidence has shown the use of videos in medical education to be beneficial. It has normally been used to demonstrate clinical examination and procedures this study suggest there is a place for explanation of pathophysiology and disease summaries. However, there has been little research in to its use for graphically representing condition summaries. Computer technology now allows people to generate animation on their personal computer. It is possible that over time more students and doctors will start producing innovative visual and audio teaching material. This project indicates that this would be well received by students. References Planning the Medical Workforce: Medical Workforce Standing Advisory Committee: Third Report December. 1997 Page 40. The GNU project launched in 1984. Balslev T, de Grave W S, Muijtjens A M and Scherpbier A J (2005) Comparison of text and video cases in a postgraduate problem-based learning format Medical Education; 39: 1086–1092 Buick (2007) Year 3 External SSC. Bristol University Medical School. Spickard A, Smithers J, Cordray D, Gigante J, Wofford J L. (2004) A randomised trial of an online lecture with and without audio; Medical Education 38 (7), 787–790. Hudson J. N., (2004) Computer-aided learning in the real world of medical education: does the quality of interaction with the computer affect student learning? Medical Education 38 (8), 887–895. Ellen Finkelstein and Gurdy Leete, (2006) Macromedia Flash 8 for Dummies. Wiley publishing Inc. ISBN 0764596918  
Dr Alastair Buick
almost 10 years ago
Foo20151013 2023 10deu9q?1444773933
10
1021

Problem based learning - Friend or Foe?

What is Problem Based Learning? During my time at medical school, I enjoyed (at times) a curriculum delivered through the traditional model. As the name suggests, this is an approach experienced by the majority of doctors to date. The traditional model was first implemented by the American Medical College Association and American Academy of Medicine in 1894 (Barr, 2010) and has been used by the majority of medical schools. It traditionally consists of didactic lectures in the initial years covering the basic sciences followed by clinical years, where students learn clinical medicine while attending hospital placements. Is It Better? A few years after my graduation I found myself teaching at a university which had fully adopted the use of problem based learning (PBL) in the delivery of their curriculum. PBL is a philosophy of teaching that has increasingly been used in medical education over the past 40 years. It has rapidly been replaced or supplemented in medical education as opposed to the traditional model. PBL seeks to promote a more integrated and active approach to learning right from the first year with less reliance on didactic lectures. Having been involved in these two different approaches to medical education, I was interested to explore what the evidence was for and against each. For the purposes of this blog, I have looked at four specific areas. These include student attitudes, academic achievement, the academic process of learning and clinical functioning and skills. Student Attitudes Student attitudes to PBL have been highly featured in studies and many show that there is a clear favourability towards this philosophy of teaching. Blumberg and Eckenfel (1988) found that students in a problem based preclinical curriculum rated this three times higher than those in the a traditional group in terms of what they expect to experience, what they would like, and what they actually experienced. Heale et al (1988) found physicians in the problem-solving sessions rated a Continuing Medical Education short course higher compared to others who attended traditional lectures and large-group sessions. Vernon and Black (1993) performed a Meta analysis on 12 studies that looked at attitudes and towards PBL and found PBL was favored in some way by all studies. PBL appears to be preferred by the majority of students at a range of academic levels. However, Trappler (2006) found that converting a conventional curriculum to a problem based learning model for part of a psychopathology course did not show complete favourability. Students preferred the conventional lectures given by experts, rather than PBL groups run by mentors and not experts. They did however show preference towards PBL small group sessions run by experts Academic Achievement Academic achievement is an important factor to assess. Vernon and Blake (1993) compared a number of studies and found that those, which could be compared, showed a significant trend favouring traditional teaching methods. However, it was felt this might not be reliable. When looking at the heterogeneity of the studies there was significant variation that could not be accounted for by chance alone. Interestingly, they found that there was significant geographical variation across the United States such that New Mexico showed consistently negative effects and Michigan State showed consistently positive. Other studies have shown that the traditional method may show a slightly better outcome when assessing academic achievement. Schmidt et al (1987) looked at the same progress test taken among students in six different Universities in the Netherlands and found that those taught by a traditional approach showed slightly better outcomes. Baca et al (1990) compared performances of medical students in two separate tracks, one PBL the other a traditional model. Baca et al found that PBL students scored slightly lower in the National Board of Medical Examiners (NBME) examinations. Dochy et al (2003) conducted a meta analysis comparing 43 studies and found that when considering the effect of PBL on the knowledge of students the combined effect size is slightly negative. The academic process of learning It is important in medical education to enable people to continue life long learning, to overcome problems and fill in knowledge gaps. Coles (1990) and Entwistle (1983) found that PBL students would place more emphasis on understanding and meaning compared to just rote learning, seen more in those taught by a traditional approach. Students on a PBL course also place more focus on using resources such as the library and online sources rather than those taught in a traditional approach (Rankin, 1992). Students taught by a traditional model place more emphasis on the resources supplied by the faculty itself. It has also been shown that students who learn through a process of problem solving, are more likely to use this spontaneously to solve new problems in the future compared with those taught in a traditional way (Bransford et al, 1989). Clinical functioning and skills Clinical competence is an important aspect in medical education and has been measured in studies comparing PBL and traditional methods. The traditional model focuses acquisition of clinical competence in the final years of a program with hospital placements. In a PBL course it may be more integrated early on. There are however, only a few studies that look at clinical competence gained in undergraduate PBL courses. Vernon and Blake (1993) compared some of these studies and found that students obtained better clinical functioning in a PBL setting compared to a traditional approach. This was statistically significant, however there was still significant heterogeneity amongst studies and for conclusive results to be made 110 studies would have to be compared, rather that the 16 samples they were able to use. They also found that in contrast to the NBME I giving better results in the traditional model, PBL students score slightly higher in NBME II and federation licensing examination which related more on clinical functioning than basic sciences. On reflection, this evidence has indicated to me that PBL is a very valuable approach and it has a number of benefits. The traditional model in which I was taught has provided a good level of academic education. However, it may not have supported me as well as a PBL course in other areas of medical education such as academic process, clinical functioning and satisfaction. On reflection and current recommendations are for a hybridisation of the PBL and traditional approach to be used (Albanese, 2010) and I would support this view in light of the evidence. References Baca, E., Mennin, S. P., Kaufman, A., and Moore-West, M. A Comparison between a Problem-Based, Community Orientated track and Traditional track Within One Medical school. In Innovation in Medical Education; An Evaluation of Its Present Status. New York: Springer publishing Barr D. (2010) Revolution or evolution? Putting the Flexner Report in context. Medical Education; 45: 17–22 Blumberg P, Eckenfels E. (1988) A comparison of student satisfaction with their preclinical environment in a traditional and a problem based curriculum. Research in Medical Education: Proceedings of the Twenty-Seventh Annual Conference, pp. 60- 65 Bransford, J. D., Franks, J. J., Vye, N. J., & Sherwood, R. D. (1989). New Approaches to Instruction: Because Wisdom Can't Be Told. In S. Vosiadou & A. Ortony (Eds.), Similarity and Analogical Reasoning (pp. 470 297). New York: Cambridge University Press. Coles CR. (1990) Evaluating the effects curricula have on student learning: toward a more competent theory for medical education. In: Innovation in medical education: an evaluation of its present status. New York: Springer publishing; 1990;76-93. Dochy F., Segersb M., Van den Bosscheb P., Gijbelsb D., (2003) Effects of problem-based learning: a meta-analysis. Learning and Instruction. 13:5, 533-568 Entwistle NJ, Ramsden P. Understanding student learning. London: Croom Helm; 1983 Heale J, Davis D, Norman G, Woodward C, Neufeld V, Dodd P. (1988) A randomized controlled trial assessing the impact of problem-based versus didactic teaching methods in CME. Research in Medical Education.;27:72-7. Trappler B., (2006) Integrated problem-based learning in the neuroscience curriculum - the SUNY Downstate experience. BMC Medical Education 6: 47. Rankin JA. Problem-based medical education: effect on library use. Bull Med Libr Assoc 1992;80:36-43. Schmidt, H G; Dauphinee, W D; Patel, V L (1987) Comparing the effects of problem-based and conventional curricula in an international sample Journal of Medical Education. 62(4): 305-15 Vernon D. T., Blake R. L., (1993) Does Problem-based learning work? A meta-analysis of evaluated research. Academic Medicine.  
Dr Alastair Buick
over 6 years ago
Foo20151013 2023 2njk5o?1444774020
4
1326

LWW: Case Of The Month - April 2013

This month’s case is by David R Bell PhD, co-author of Medical Physiology: Principles for Clinical Medicine, 3e (ISBN: 9781451110395) For more information, or to purchase your copy, visit: http://tiny.cc/Rhoades4e, with 15% off using the discount code: MEDUCATION. The case below is followed by a quiz question, allowing you a choice of diagnoses. Select the one letter section that best describes the patient’s condition. The Case A 28-year old woman has an unremarkable pregnancy through her first 28 weeks of gestation, with normal weight gain and no serious complications. She has no previous history of diabetes, hypertension of other systemic disease before or during her current pregnancy. During her 30-week checkup, her blood pressure measures 128/85, and she complains about feeling slightly more “bloated” than usual with swelling in her legs that seems to get more uncomfortable as the day goes on. Her obsterician recommends that she get more bed rest, stay off her feet as much as possible and return for evaluation in one week. At the one-week follow-up, the patient presents with noticable”puffiness” in her face, and a blood pressure of 145/95. She complains she has been developing headaches, sporadic blurred vision, right-sided discomfort and some shortness of breath. She has gained more than 10 lb (4.5kg) in the past week. A urinalysis on the patient revelas no glucose but a 3+ reading for protein. Her obstetrician decides to admit her immediately to a local tertiary care hospital for further evaluation. Over the next 24 hours, the patient’s urine output is recorded as 500mL and contains 6.8 grams of protein. Her plasma albumin level is 3.1 g/dl, hemacrit 48%, indirect bilirubin 1.5mg/dl and blood platelets=77000/uL, respectively. Her blood pressure is now 190/100. It is decided to try to deliver the foetus. The expelled placenta is small and shows signs of widespread ischmic damage. Within a week of delivery, the mother’s blood pressure returns to normal, and her oedema subsides. One month later, the mother shows no ill effects of thos later-term syndrome. Question What is the clinical diagnosis of this patient’s condition and its underlying pathophysiology? A. Gestational Hypertension B. Preeclampsia C. Gestational Diabetes D. Compression of the Inferior Vena Cava Answer The correct answer is "B. Preeclampsia". The patient’s symptoms and laboratory findings are consistent with a diagnosis of Preeclampsia, which is a condition occurring in some pregnancies that causes life-threatening organ and whole body regulatory malfunctions. The patient’s negative urine glucose is inconsistent with gestational diabetes. Gestational hypertension or vena caval compression cannot explain all of the patient findings. The patient has three major abnormal findings- generalised oedema, hypertension and proteinuria which are all common in preeclampsia. Although sequalae of a normal pregnancy can include water and salt retention, bloating, modest hypertension and leg swelling (secondary to capillary fluid loss from increased lower limb capillary hydrostatic pressure due to compression of the inferior vena cava by the growing foetus/uterus), oedema in the head and upper extremities, a rapid 10 pound weight gain and shortness of breath suggests a generalized and serious oedematous state. The patient did not have hypertension before or within 20 weeks gestation (primary hypertension) and did not develop hypertension after the 20th week of pregnancy with no other abnormal findings (gestational hypertension). Hypertension with proteinuria occurring beyond the 20th week of pregnancy however is a hallmark of preeclampsia. In addition, the patient has hemolysis (elevated bilirubin and LDH levels), elevated liver enzyme levels and thrombocytopenia. This is called the HELLP syndrome (HELLP = Hemolysis, Elevated Liver enzymes and Low Platelets.), and is considered evidence of serious patient deterioration in preeclampsia. A urine output of 500 ml in 24 hours is 1/2 to 1/4 of normal output in a hydrated female and indicates renal insufficiency. Protein should never be found in the urine and indicates loss of capillaries integrity in glomeruli which normally are not permeable to proteins. The patient has substantial 24 urine protein loss and hypoalbuminemia. However, generally plasma albumin levels must drop below 2.5 gm/dl to decrease plasma oncotic pressure enough to cause general oedema. The patient’s total urinary protein loss was insufficient in this regard. Capillary hyperpermeability occurs with preeclampsia and, along with hypertension, could facilitate capillary water efflux and generalized oedema. However myogenic constriction of pre-capillary arterioles could reduce the effect of high blood pressure on capillary water efflux. An early increase in hematocrit in this patient suggests hemoconcentration which could be caused by capillary fluid loss but the patient’s value of 48 is unremarkable and of little diagnostic value because increased hematocrit occurs in both preeclampsia and normal pregnancy. PGI2, PGE2 and NO, produced during normal pregnancy, cause vasorelaxation and luminal expansion of uterine arteries, which supports placental blood flow and development. Current theory suggests that over production of endothelin, thromboxane and oxygen radicals in preeclampsia antagonize vasorelaxation while stimulating platelet aggregation, microthrombi formation and endothelial destruction. These could cause oedema, hypertension, renal/hepatic deterioration and placental ischemia with release of vasotoxic factors. The patient’s right-sided pain is consistent with liver pathology (secondary to hepatic DIC or oedematous distention). Severe hypertension in preeclampsia can lead to maternal end organ damage, stroke, and death. Oedematous distension of the liver can cause hepatic rupture and internal hemorrhagic shock. Having this patient carry the baby to term markedly risks the life of the mother and is not considered current acceptable clinical practice. Delivery of the foetus and termination of the pregnancy is the only certain way to end preeclampsia. Read more This case is by David R Bell PhD, co-author of Medical Physiology: Principles for Clinical Medicine, 3e (ISBN: 9781451110395) For more information, or to purchase your copy, visit: http://tiny.cc/Rhoades4e. Save 15% (and get free P&P) on this, and a whole host of other LWW titles at (lww.co.uk)[http://lww.co.uk] when you use the code MEDUCATION when you check out! About LWW/ Wolters Kluwer Health Lippincott Williams and Wilkins (LWW) is a leading publisher of high-quality content for students and practitioners in medical and related fields. Their text and review products, eBooks, mobile apps and online solutions support students, educators, and instiutions throughout the professional’s career. LWW are proud to partner with Meducation.  
Lippincott Williams & Wilkins
over 6 years ago
Foo20151013 2023 1eqve0g?1444774030
1
89

LWW: Case Of The Month - May 2013

This month’s case is by Barbara J. Mroz, M.D. and Robin R. Preston, Ph.D., author of Lippincott’s Illustrated Reviews: .Physiology (ISBN: 9781451175677). For more information, or to purchase your copy, visit: http://tiny.cc/PrestonLIR, with 15% off using the discount code: MEDUCATION. The case below is followed by a choice of diagnostic tests. Select the one lettered selection that would be most helpful in diagnosing the patient’s condition. The Case A 54-year-old male 2 pack-per-day smoker presents to your office complaining of cough and shortness of breath (SOB). He reports chronic mild dyspnea on exertion with a daily cough productive of clear mucus. During the past week, his cough has increased in frequency and is now productive of frothy pink-tinged sputum; his dyspnea is worse and he is now short of breath sometimes even at rest. He has had difficulty breathing when lying flat in bed and has spent the past two nights sleeping upright in a recliner. On physical examination, he is a moderately obese male with a blood pressure of 180/80 mm Hg, pulse of 98, and respiratory rate of 22. His temperature is 98.6°F. He becomes winded from climbing onto the exam table. Auscultation of the lungs reveals bilateral wheezing and crackles in the lower posterior lung fields. There is pitting edema in the lower extremities extending up to the knees.  Question Which if the following tests would be most helpful in confirming the correct diagnosis? A. Spirometry B. Arterial blood gas C. Complete blood count D. B-type natriuretic peptide blood test E. Electrocardiogram Answer? The correct answer is B-type natriuretic peptide blood test. Uncomfortable breathing, or feeling short of breath, is a common medical complaint with multiple causes. When approaching a patient with dyspnea, it is helpful to remember that normal breathing requires both a respiratory system that facilitates gas exchange between blood and the atmosphere, and a cardiovascular system that transports O2 and CO¬2 between the lungs and tissues. Dysfunction in either system may cause dyspnea, and wheezing (or bronchospasm) may be present in both cardiac and pulmonary disease. In this patient, the presence of lower extremity edema and orthopnea (discomfort when lying flat) are both suggestive of congestive heart failure (CHF). Elevated blood pressure (systolic of 180) and a cough productive of frothy pink sputum may also be associated symptoms. While wheezing could also be caused by COPD (chronic obstructive pulmonary disease) in the setting of chronic tobacco use, the additional exam findings of lung crackles and edema plus systolic hypertension are all more consistent with CHF. What does the B-type natriuretic peptide blood test tell us? When the left ventricle (LV) fails to maintain cardiac output (CO) at levels required for adequate tissue perfusion, pathways are activated to increase renal fluid retention. A rising plasma volume increases LV preload and sustains CO via the Frank-Starling mechanism. Volume loading also stimulates cardiomyocytes to release atrial- (ANP) and B-type (BNP) natriuretic peptides. BNP has a longer half-life than ANP and provides a convenient marker for volume loading. Plasma BNP levels are measured using immunoassay; levels >100 pg/mL are suggestive of overload resulting in heart failure. How does heart failure cause dyspnea? Increasing venous pressure increases mean capillary hydrostatic pressure and promotes fluid filtration from the vasculature. Excess filtration from pulmonary capillaries causes fluid accumulation within the alveoli (pulmonary edema) and interferes with normal gas exchange, resulting in SOB. Physical signs and symptoms caused by high volume loading include: (1) Lung crackles, caused by fluid within alveoli (2) Orthopnea. Reclining increases pulmonary capillary hydrostatic pressure through gravitational effects, worsening dyspnea when lying flat. (3) Pitting dependent edema caused by filtration from systemic capillaries, an effect also influenced by position (causing edema in the lower legs as in our ambulatory patient or in dependent areas like the sacrum in a bedridden patient). What would an electrocardiogram show? Heart failure can result in LV hypertrophy and manifest as a left axis deviation on an electrocardiogram (ECG), but some patients in failure show a normal ECG. An ECG is not a useful diagnostic tool for dyspnea or CHF per se. Wouldn’t spirometry be more suitable for diagnosing the cause of dyspnea in a smoker? Simple spirometry will readily identify the presence of airflow limitation (obstruction) as a cause of dyspnea. It's a valuable test to perform in any smoker and can establish a diagnosis of chronic obstructive pulmonary disease (COPD) if abnormal. While this wheezing patient is an active smoker who could have airflow obstruction, the additional exam findings above point more to a diagnosis of CHF. What would an arterial blood gas show? An arterial blood gas measures arterial pH, PaCO¬2, and PaO2. While both CHF and COPD could cause derangements in the values measured, these abnormalities would not necessarily be diagnostic (e.g., a low PaO2 could be seen in both conditions, as could an elevated PaCO¬2). Would a complete blood count provide useful information? A complete blood count could prove useful if anemia is a suspected cause of dyspnea. Test result BNP was elevated (842 pg/mL), consistent with CHF. Diuretic treatment was initiated to help reduce volume overload and an afterload reducing agent was started to lower blood pressure and improve systolic function.  
Lippincott Williams & Wilkins
over 6 years ago
Foo20151013 2023 qo3u6t?1444774095
3
909

Prostate and Bladder Cancer Staging and Grading - A review for students

Amended from Wikipedia and other sources T.I Lemon Stage means spread Grade means histology Prostate cancer staging – spread of the cancer There are two schemes commonly used to stage prostate cancer. TMN and Whitmore Jewett Stage I disease is cancer that is found incidentally in a small part of the sample when prostate tissue was removed for other reasons, such as benign prostatic hypertrophy, and the cells closely resemble normal cells and the gland feels normal to the examining finger Stage II more of the prostate is involved and a lump can be felt within the gland. Stage III, the tumour has spread through the prostatic capsule and the lump can be felt on the surface of the gland. In Stage IV disease, the tumour has invaded nearby structures, or has spread to lymph nodes or other organs. Grading - Gleason Grading System is based on cellular content and tissue architecture from biopsies, which provides an estimate of the destructive potential and ultimate prognosis of the disease. TX: cannot evaluate the primary tumor T0: no evidence of tumor T1: tumor present, but not detectable clinically or with imaging • T1a: tumor was incidentally found in less than 5% of prostate tissue resected (for other reasons) • T1b: tumor was incidentally found in greater than 5% of prostate tissue resected • T1c: tumor was found in a needle biopsy performed due to an elevated serum PSA T2: the tumor can be felt (palpated) on examination, but has not spread outside the prostate • T2a: the tumor is in half or less than half of one of the prostate gland's two lobes • T2b: the tumor is in more than half of one lobe, but not both • T2c: the tumor is in both lobes but within the prostatic capsule • T3: the tumor has spread through the prostatic capsule (if it is only part-way through, it is still T2) • T3a: the tumor has spread through the capsule on one or both sides • T3b: the tumor has invaded one or both seminal vesicles • T4: the tumor has invaded other nearby structures It should be stressed that the designation "T2c" implies a tumor which is palpable in both lobes of the prostate. Tumors which are found to be bilateral on biopsy only but which are not palpable bilaterally should not be staged as T2c. Evaluation of the regional lymph nodes ('N') NX: cannot evaluate the regional lymph nodes • N0: there has been no spread to the regional lymph nodes • N1: there has been spread to the regional lymph nodes Evaluation of distant metastasis ('M') • MX: cannot evaluate distant metastasis • M0: there is no distant metastasis • M1: there is distant metastasis • M1a: the cancer has spread to lymph nodes beyond the regional ones • M1b: the cancer has spread to bone • M1c: the cancer has spread to other sites (regardless of bone involvement) Evaluation of the histologic grade ('G') Usually, the grade of the cancer (how different the tissue is from normal tissue) is evaluated separately from the stage; however, for prostate cancer, grade information is used in conjunction with TNM status to group cases into four overall stages. • GX: cannot assess grade • G1: the tumor closely resembles normal tissue (Gleason 2–4) • G2: the tumor somewhat resembles normal tissue (Gleason 5–6) • G3–4: the tumor resembles normal tissue barely or not at all (Gleason 7–10) Of note, this system of describing tumors as "well-", "moderately-", and "poorly-" differentiated based on Gleason score of 2-4, 5-6, and 7-10, respectively, persists in SEER and other databases but is generally outdated. In recent years pathologists rarely assign a tumor a grade less than 3, particularly in biopsy tissue. A more contemporary consideration of Gleason grade is: • Gleason 3+3: tumor is low grade (favorable prognosis) • Gleason 3+4 / 3+5: tumor is mostly low grade with some high grade • Gleason 4+3 / 5+3: tumor is mostly high grade with some low grade • Gleason 4+4 / 4+5 / 5+4 / 5+5: tumor is all high grade Note that under current guidelines, if any Pattern 5 is present it is included in final score, regardless of the percentage of the tissue having this pattern, as the presence of any pattern 5 is considered to be a poor prognostic marker. Overall staging The tumor, lymph node, metastasis, and grade status can be combined into four stages of worsening severity. Stage Tumor Nodes Metastasis Grade Stage I T1a N0 M0 G1 Stage II T1a N0 M0 G2–4 T1b N0 M0 Any G T1c N0 M0 Any G T1 N0 M0 Any G T2 N0 M0 Any G Stage III T3 N0 M0 Any G Stage IV T4 N0 M0 Any G Any T N1 M0 Any G Any T Any N M1 Any G Bladder T (Primary tumour) • TX Primary tumour cannot be assessed • T0 No evidence of primary tumour • Ta Non-invasive papillary carcinoma • Tis Carcinoma in situ (‘flat tumour’) • T1 Tumour invades subepithelial connective tissue • T2a Tumour invades superficial muscle (inner half) • T2b Tumour invades deep muscle (outer half) • T3 Tumour invades perivesical tissue: • T3a Microscopically • T3b Macroscopically (extravesical mass) • T4a Tumour invades prostate, uterus or vagina • T4b Tumour invades pelvic wall or abdominal wall N (Lymph nodes) • NX Regional lymph nodes cannot be assessed • N0 No regional lymph node metastasis • N1 Metastasis in a single lymph node 2 cm or less in greatest dimension • N2 Metastasis in a single lymph node more than 2 cm but not more than 5 cm in greatest dimension,or multiple lymph nodes, none more than 5 cm in greatest dimension • N3 Metastasis in a lymph node more than 5 cm in greatest dimension M (Distant metastasis) • MX Distant metastasis cannot be assessed • M0 No distant metastasis • M1 Distant metastasis. Grade Urothelial papilloma – non cancerous (benign) tumour •Papillary urothelial neoplasm of low malignant potential (PUNLMP) – very slow growing and unlikely to spread •Low grade papillary urothelial carcinoma – slow growing and unlikely to spread •High grade papillary urothelial carcinoma – more quickly growing and more likely to spread  
Thomas Lemon
almost 6 years ago
Foo20151013 2023 5jd630?1444774107
4
76

Do hacks really work?

Well I think they do. In 2012 I attended the #digidoc2012 conference in London. This was a conference aimed at bringing clinicians and technology enthusiasts together to learn how better to use technology to help in a clinical setting. Part of the day included tutorials and lectures, but my favourite part was the ‘hack’ session. In groups, we pitched ideas about potential apps which could be created to help different groups i.e. clinicians, patients, providers etc. From this session the initial concept of PhotoConsent was formed. The problem: Medical photography in a hospital setting can be relatively straight forward. A clinician can call up the medical photography department, get them to sort out the forms and details, patient consented, picture taken...done. The main issue with this is the time taken to access the medical photography department. Medical photography in a moderately acute setting or primary care is considerably less straight forward. Issues on how you document the consent, what methods used (verbal or written) and how this is stored need to be considered. There exists some guidance on the matter (see Good Medical Practice: Making and using visual and audio recordings of patients), however actual practice is variable. The added issue of social media and the ease of which images can now be shared can add to the confusion. The solution - PhotoConsent: I am involved in several on-line forums and governance groups. With seeing interactions about patient images in social media and various online clinical groups, I felt a more complete solution was needed which gave better protection and governance for both patients and clinicians. Following the #digidoc12 conference (https://thedigitaldoc.co.uk/), I met some innovative colleagues including Ed Wallit (@podmedicsed). We took this brainstormed idea further and now we have a finished product- PhotoConsent app. PhotoConsent is a new application designed to help you as a clinician to safely and easily take photos of a patient and then obtain the relevant consent for that photo quickly and efficiently. It is currently available on iOS. How does it work? Upon opening the app you can take a photo from the home screen. Once you have confirmed you have the best possible image, you and the patient are shown the consent options. Using PhotoConsent you can choose to obtain consent to use the photo for assessment, second opinion or referral, educational use or publication. In real time with the patient you can then select each consent option to explore in more detail to allow informed consent. This consent can then be digitally signed and emailed to the patient instantly. The image and consent can then be used by the clinician in accordance with GMC guidance. This can be via the app, email or via the online portal: PhotoConsent.co.uk. What makes PhotoConsent unique is that the consent is digitally secure in the metadata of the image. So proof of consent is always with the image. Why should I use PhotoConsent? It is important if taking a medical image of a patient, that consent is obtained and recorded. Written consent is considered the best option. PhotoConsent allows you to take consent with the patient in real-time, forward the patient a copy of the consent so they can stay informed, and be safe in the knowledge that consent is secure within the image metadata. All this is possible through your own iOS device making it convenient and effective for all involved. What is next for PhotoConsent? The first release of PhotoConsent is out, but there can always be progression. In the future I hope to bring the app to the Android platform to make it more accessible to a wider audience. We are also working on expanding the app to include consent for non-medical use. We have a few other ideas but time will tell if these are possible. About the owner: Dr Hussain Gandhi (@drgandalf52) is a GP and GP trainer working in the Nottingham area. He is a RCGP First5 lead, Treasurer of RCGP Vale of Trent faculty, co-author of The New GPs Handbook, owner of PhotoConsent and egplearning.co.uk – an e-learning portal; and a member of Tiko’s GP group on Facebook (@TheVoiceofTGG). All Images taken via PhotoConsent.  
Hussain Gandhi
almost 6 years ago