New to Meducation?
Sign up
Already signed up? Log In

Category

Preview
17
203

ENT - Mouth Examination.mp4

This video - produced by students at Oxford University Medical School in conjunction with the ENT faculty - demonstrates how to perform an examination of the mouth.  
Hussam Rostom
about 8 years ago
29749
7
375

Cranial Nerve Examination - Abnormal

Cranial Nerve 1- Olfaction This patient has difficulty identifying the smells presented. Loss of smell is anosmia. The most common cause is a cold (as in this patient) or nasal allergies. Other causes include trauma or a meningioma affecting the olfactory tracts. Anosmia is also seen in Kallman syndrome because of agenesis of the olfactory bulbs. Cranial Nerve 2- Visual acuity This patientâs visual acuity is being tested with a Rosenbaum chart. First the left eye is tested, then the right eye. He is tested with his glasses on so this represents corrected visual acuity. He has 20/70 vision in the left eye and 20/40 in the right. His decreased visual acuity is from optic nerve damage. Cranial Nerve II- Visual field The patient's visual fields are being tested with gross confrontation. A right sided visual field deficit for both eyes is shown. This is a right hemianopia from a lesion behind the optic chiasm involving the left optic tract, radiation or striate cortex. Cranial Nerve II- Fundoscopy The first photograph is of a fundus showing papilledema. The findings of papilledema include 1. Loss of venous pulsation 2. Swelling of the optic nerve head so there is loss of the disc margin 3. Venous engorgement 4. Disc hyperemi 5. Loss of the physiologic cup an 6. Flame shaped hemorrhages. This photograph shows all the signs except the hemorrhages and loss of venous pulsations. The second photograph shows optic atrophy, which is pallor of the optic disc resulting form damage to the optic nerve from pressure, ischemia, or demyelination. Images Courtesy Dr. Kathleen Digre, University of Uta Cranial Nerves 2 & 3- Pupillary Light Refle The swinging flashlight test is used to show a relative afferent pupillary defect or a Marcus Gunn pupil of the left eye. The left eye has perceived less light stimulus (a defect in the sensory or afferent pathway) then the opposite eye so the pupil dilates with the same light stimulus that caused constriction when the normal eye was stimulated. Video Courtesy of Dr.Daniel Jacobson, Marshfield Clini and Dr. Kathleen Digre, University of Uta Cranial Nerves 3, 4 & 6- Inspection & Ocular Alignmen This patient with ocular myasthenia gravis has bilateral ptosis, left greater than right. There is also ocular misalignment because of weakness of the eye muscles especially of the left eye. Note the reflection of the light source doesn't fall on the same location of each eyeball. Video Courtesy of Dr.Daniel Jacobson, Marshfield Clini and Dr. Kathleen Digre, University of Uta Cranial Nerves 3, 4 & 6- Versions • The first patient shown has incomplete abduction of her left eye from a 6th nerve palsy. • The second patient has a left 3rd nerve palsy resulting in ptosis, dilated pupil, limited adduction, elevation, and depression of the left eye. Second Video Courtesy of Dr.Daniel Jacobson, Marshfield Clini and Dr. Kathleen Digre, University of Uta Cranial Nerves 3, 4 & 6- Duction Each eye is examined with the other covered (this is called ductions). The patient is unable to adduct either the left or the right eye. If you watch closely you can see nystagmus upon abduction of each eye. When both eyes are tested together (testing versions) you can see the bilateral adduction defect with nystagmus of the abducting eye. This is bilateral internuclear ophthalmoplegia often caused by a demyelinating lesion effecting the MLF bilaterally. The adduction defect occurs because there is disruption of the MLF (internuclear) connections between the abducens nucleus and the lower motor neurons in the oculomotor nucleus that innervate the medial rectus muscle. Saccades Smooth Pursui The patient shown has progressive supranuclear palsy. As part of this disease there is disruption of fixation by square wave jerks and impairment of smooth pursuit movements. Saccadic eye movements are also impaired. Although not shown in this video, vertical saccadic eye movements are usually the initial deficit in this disorder. Video Courtesy of Dr.Daniel Jacobson, Marshfield Clini and Dr. Kathleen Digre, University of Utah Optokinetic Nystagmu This patient has poor optokinetic nystagmus when the tape is moved to the right or left. The patient lacks the input from the parietal-occipital gaze centers to initiate smooth pursuit movements therefore her visual tracking of the objects on the tape is inconsistent and erratic. Patients who have a lesion of the parietal-occipital gaze center will have absent optokinetic nystagmus when the tape is moved toward the side of the lesion. Vestibulo-ocular refle The vestibulo-ocular reflex should be present in a comatose patient with intact brainstem function. This is called intact "Doll’s eyes" because in the old fashion dolls the eyes were weighted with lead so when the head was turned one way the eyes turned in the opposite direction. Absent "Doll’s eyes" or vestibulo-ocular reflex indicates brainstem dysfunction at the midbrain-pontine level. Vergenc Light-near dissociation occurs when the pupils don't react to light but constrict with convergence as part of the near reflex. This is what happens in the Argyll-Robertson pupil (usually seen with neurosyphilis) where there is a pretectal lesion affecting the retinomesencephalic afferents controlling the light reflex but sparing the occipitomesencephalic pathways for the near reflex. Video Courtesy of Dr.Daniel Jacobson, Marshfield Clini and Dr. Kathleen Digre, University of Uta Cranial Nerve 5- Sensor There is a sensory deficit for both light touch and pain on the left side of the face for all divisions of the 5th nerve. Note that the deficit is first recognized just to the left of the midline and not exactly at the midline. Patients with psychogenic sensory loss often identify the sensory change as beginning right at the midline. Cranial Nerves 5 & 7 - Corneal refle A patient with an absent corneal reflex either has a CN 5 sensory deficit or a CN 7 motor deficit. The corneal reflex is particularly helpful in assessing brainstem function in the unconscious patient. An absent corneal reflex in this setting would indicate brainstem dysfunction. Cranial Nerve 5- Motor • The first patient shown has weakness of the pterygoids and the jaw deviates towards the side of the weakness. • The second patient shown has a positive jaw jerk which indicates an upper motor lesion affecting the 5th cranial nerve. First Video Courtesy of Alejandro Stern, Stern Foundation Cranial Nerve 7- Motor • The first patient has weakness of all the muscles of facial expression on the right side of the face indicating a lesion of the facial nucleus or the peripheral 7th nerve. • The second patient has weakness of the lower half of his left face including the orbicularis oculi muscle but sparing the forehead. This is consistent with a central 7th or upper motor neuron lesion. Video Courtesy of Alejandro Stern, Stern Foundatio Cranial Nerve 7- Sensory, Tast The patient has difficulty correctly identifying taste on the right side of the tongue indicating a lesion of the sensory limb of the 7th nerve. Cranial Nerve 8- Auditory Acuity, Weber & Rinne Test This patient has decreased hearing acuity of the right ear. The Weber test lateralizes to the right ear and bone conduction is greater than air conduction on the right. He has a conductive hearing loss. Cranial Nerve 8- Vestibula Patients with vestibular disease typically complain of vertigo – the illusion of a spinning movement. Nystagmus is the principle finding in vestibular disease. It is horizontal and torsional with the slow phase of the nystagmus toward the abnormal side in peripheral vestibular nerve disease. Visual fixation can suppress the nystagmus. In central causes of vertigo (located in the brainstem) the nystagmus can be horizontal, upbeat, downbeat, or torsional and is not suppressed by visual fixation. Cranial Nerve 9 & 10- Moto When the patient says "ah" there is excessive nasal air escape. The palate elevates more on the left side and the uvula deviates toward the left side because the right side is weak. This patient has a deficit of the right 9th & 10th cranial nerves. Video Courtesy of Alejandro Stern, Stern Foundatio Cranial Nerve 9 & 10- Sensory and Motor: Gag Refle Using a tongue blade, the left side of the patient's palate is touched which results in a gag reflex with the left side of the palate elevating more then the right and the uvula deviating to the left consistent with a right CN 9 & 10 deficit. Video Courtesy of Alejandro Stern, Stern Foundation Cranial Nerve 11- Moto When the patient contracts the muscles of the neck the left sternocleidomastoid muscle is easily seen but the right is absent. Looking at the back of the patient, the left trapezius muscle is outlined and present but the right is atrophic and hard to identify. These findings indicate a lesion of the right 11th cranial nerve. Video Courtesy of Alejandro Stern, Stern Foundation Cranial Nerve 12- Moto Notice the atrophy and fasciculation of the right side of this patient's tongue. The tongue deviates to the right as well because of weakness of the right intrinsic tongue muscles. These findings are present because of a lesion of the right 12th cranial nerve.  
Neurologic Exam
over 9 years ago
Preview
7
532

Embryology of the Head and Neck - Chapter 2: Embryology of the Head, Face and Oral Cavity

Diagrammatic representation of the development of the head and neck region for undergraduate students, particularly Oral Biology. The module is available thr...  
YouTube
over 5 years ago
Foo20151013 2023 e2a8vo?1444774258
7
294

Monkey See, Monkey Do.

So you're sitting in a bus when you see a baby smile sunnily and gurgle at his mother. Your automatic response? You smile too. You're jogging in the park, when you see a guy trip over his shoelaces and fall while running. Your knee jerk reaction? You wince. Even though you're completely fine and unscathed yourself. Or, to give a more dramatic example; you're watching Titanic for the umpteenth time and as you witness Jack and Rose's final moments together, you automatically reach for a tissue and wipe your tears in whole hearted sympathy ( and maybe blow your nose loudly, if you're an unattractive crier like yours truly). And here the question arises- why? Why do we experience the above mentioned responses to situations that have nothing to do with us directly? As mere passive observers, what makes us respond at gut level to someone else's happiness or pain, delight or excitement, disgust or fear? In other words, where is this instinctive response to other people's feelings and actions that we call empathy coming from? Science believes it may have discovered the answer- mirror neurons. In the early 1990s, a group of scientists (I won't bore you with the details of who, when and where) were performing experiments on a bunch of macaque monkeys, using electrodes attached to their brains. Quite by accident, it was discovered that when the monkey saw a scientist holding up a peanut, it fired off the same motor neurons in its brain that would fire when the monkey held up a peanut itself. And that wasn't all. Interestingly, they also found that these motor neurons were very specific in their actions. A mirror neuron that fired when the monkey grasped a peanut would also fire only when the experimenter grasped a peanut, while a neuron that fired when the monkey put a peanut in its mouth would also fire only when the experimenter put a peanut in his own mouth. These motor neurons came to be dubbed as 'mirror neurons'. It was a small leap from monkeys to humans. And with the discovery of a similar, if not identical mirror neuron system in humans, the studies, hypotheses and theories continue to build. The strange thing is that mirror neurons seem specially designed to respond to actions with clear goals- whether these actions reach us through sight, sound, smell etc, it doesn't matter. A quick example- the same mirror neurons will fire when we hop on one leg, see someone hopping, hear someone hopping or hear or read the word 'hop'. But they will NOT respond to meaningless gestures, random or pointless sounds etc. Instead they may well be understanding the intentions behind the related action. This has led to a very important hypothesis- the 'action understanding' ability of mirror neurons. Before the discovery of mirror neurons, scientists believed our ability to understand each other, to interpret and respond to another's feeling or actions was the result of a logical thought process and deduction. However, if this 'action understanding' hypothesis is proved right, then it would mean that we respond to each other by feeling, instead of thinking. For instance, if someone smiles at you, it automatically fires up your mirror neurons for smiling. They 'understand the action' and induce the same sensation within you that is associated with smiling. You don't have to think about what the other person intends by this gesture. Your smile flows thoughtlessly and effortlessly in return. Which brings us to yet another important curve- if mirror neurons are helping us to decode facial expressions and actions, then it stands to reason that those gifted people who are better at such complex social interpretations must be having a more active mirror neuron system.(Imagine your mom's strained smile coupled with the glint in her eye after you've just thrown a temper tantrum in front of a roomful of people...it promises dire retribution my friends. Trust me.) Then does this mean that people suffering from disorders such as autism (where social interactions are difficult) have a dysfunctional or less than perfect mirror neuron system in some way? Some scientists believe it to be so. They call it the 'broken mirror hypothesis', where they claim that malfunctioning mirror neurons may be responsible for an autistic individual's inability to understand the intention behind other people's gestures or expressions. Such people may be able to correctly identify an emotion on someone's face, but they wouldn't understand it's significance. From observing other people, they don't know what it feels like to be sad, angry, surprised or scared. However, the jury is still out on this one folks. The broken mirror hypothesis has been questioned by others who are still skeptical about the very existence of these wonder neurons, or just how it is that these neurons alone suffered such a developmental hit when the rest of the autistic brain is working just dandy? Other scientists argue that while mirror neurons may help your brain to understand a concept, they may not necessarily ENCODE that concept. For instance, babies understand the meaning behind many actions without having the motor ability to perform them. If this is true, then an autistic person's mirror neurons are perfectly fine...they were just never responsible for his lack of empathy in the first place. Slightly confused? Curious to find out more about these wunderkinds of the human brain? Join the club. Whether you're an passionate believer in these little fellas with their seemingly magical properties or still skeptical, let me add to your growing interest with one parting shot- since imitation appears to be the primary function of mirror neurons, they might well be partly responsible for our cultural evolution! How, you ask? Well, since culture is passed down from one generation to another through sharing, observation followed by imitation, these neurons are at the forefront of our lifelong learning from those around us. Research has found that mirror neurons kick in at birth, with infants just a few minutes old sticking their tongues out at adults doing the same thing. So do these mirror neurons embody our humanity? Are they responsible for our ability to put ourselves in another person's shoes, to empathize and communicate our fellow human beings? That has yet to be determined. But after decades of research, one thing is for sure-these strange cells haven't yet ceased to amaze and we definitely haven't seen the last of them. To quote Alice in Wonderland, the tale keeps getting "curiouser and curiouser"!  
Huda Qadir
over 6 years ago
Preview
4
83

Explaining The Inhaler Technique OSCE Station Guide

Patients with respiratory disease (breathing problems) such as asthma or chronic obstructive pulmonary disease (COPD) often require medication in the form of inhalers. Basically they need to inhale, hence the term inhalers, the medication via their mouth into their lungs.  
OSCE Skills
over 6 years ago
Preview
4
126

Nerve and Blood Supply of the Tongue | Kenhub

This is an article listing all the nerves, arteries and veins responsible for the innervation and blood supply of the tongue. Start learning them here.  
kenhub.com
almost 6 years ago
Foo20151013 2023 1nftkgk?1444774218
4
300

Gin & Tonic Anyone?

It was a Saturday, about tea-time in the quaint village of Athelstaneford, East Lothian. Mrs Alexandria Agutter sat in her cottage, enjoying the delights of the late-summer evening with a glass of gin and tonic. She listlessly sipped from the rather generous pick-me up, no doubt chewing over the happenings of the day. Blast! The taste was much too bitter to her liking. She stood up. And promptly crumpled to the floor in a dizzied heap. It had not been five minutes when a fiery pain gripped her parched throat and in her frenzied turn she watched the bleary room become draped in a gossamery silk. How Dame Agatha would approve. But this is no crime novel, on that fateful day, 24th August 1994, poor Mrs Agutter immortalised herself in the history books of forensic medicine; she was the victim of a revered toxin and a vintage one it was too. She had unwittingly imbibed a G&T laced with a classic poison of antiquity. A clue from the 21st century: do you recall the first Hunger Games film adaption? Those inviting purple-black berries or as Suzanne Collins coined them ‘Nightlock’; a portmanteau of hemlock and Deadly Nightshade. True to the laters’ real life appearance those onscreen fictional fruits played a recurring cameo role. Deadly Nightshade is a perennial shrub of the family Solanaceae and a relative of the humble potato (a member of the Solanus genus). It is a resident of our native woodland and may be found as far afield as Europe, Africa and Western Asia. The 18th century taxonomist, Carl Linnaeus gave the plant an intriguing name in his great Species Plantarum. The genus Atropa is aptly named after one of the three Greek Fates, Atropos. She is portrayed shearing the thread of a mortal’s life so determining the time and manner of its inevitable end. The Italian species name belladona (beautiful woman) refers to the striking mydriatic effect of the plant on the eye. The name pays homage to Pietro Andre Mattioli, a 16th century physician from Sienna, who was allegedly the first to describe the plant’s use among the Venetian glitterati - ladies of fashion favoured the seductive, doe-eyed look. Belladona is poisonous in its entirety. It was from the plant’s roots in 1831, the German apothecary Heinrich F. G. Mein isolated a white, odourless, crystalline powder: it was (surprise, surprise) atropine. Atropine is a chiral molecule. From its natural plant source it exists as a single stereoisomer L-atropine, which also happens to display a chiral potency 50-100 times that of its D-enantiomer. As with many other anaesthetic agents it is administered as a racemic mixture. How strange that atropine now sits among the anaesthetist’s armamentarium, its action as a competitive antimuscarinic to counter vagal stimulation belies its dark history. It was a favourite of Roman housewives seeking retribution against their less than faithful husbands and a staple of the witch’s potion cupboard. Little wonder how belladona became known as the Devil’s plant. Curiouser still it’s also the antidote for other poisons, most notably the organophosphates or nerve gases. On account of its non-selective antagonism, atropine produces a constellation of effects: the inhibition of salivary, lacrimal and sweat glands occurs at low doses; dry mouth and skin are early markers. Pyrexia is a central effect exacerbated by the inability to sweat. Flushing of the face due to skin vessel vasodilatation. Low parasympathetic tone causes a moderate sinus tachycardia. Vision is blurred as the eye becomes dilated, unresponsive to light and accommodation is impaired. Mental disorientation, agitation and ataxia give the impression of drunkedness or a delirium tremens like syndrome. Visual hallucinations, often of butterflies or silk blowing in the wind, are a late feature. It was then that Mr Agutter, seemingly untroubled by the sight of his wife’s problematic situation, proceeded to leave a message with the local practitioner. How fortunate they were to have the vigilant locum check the answering machine and come round to the Agutter’s lodge accompanied by an ambulance crew. The attending paramedic had the presence of mind to pour the remainder of Mrs Agutter’s beverage into a nearby jam jar, while Mr Agutter handed over what he suspected to be the offending ingredient: the bottle of Indian tonic water. As it soon transpired there were seven other casualties in the surrounding countryside of East Lothian – all involving an encounter with tonic water. In fact by some ironic twist of fate, two of the victims were the wife and son of Dr Geoffry Sharwood-Smith, a consultant aneasthetist. Obviously very familiar with the typical toxidrome of anticholinergic agents, he was quick to suspect atropine poisoning. Although for a man of his position with daily access to a sweetshop of drugs, it was not something to draw attention to. Through no small amount of cunning had the poisoner(s) devised the plan. It was elegant; atropine is very bitter. So much so that it can be detected at concentrations of 100 parts per million (0.001%). Those foolish enough to try the berries of belladonna during walks in the woods are often saved by the berry’s sour taste. They are soon spat out. But the quinine in the tonic water was a worthy disguise. The lethal dose for an adult is approximately 90-130mg, however atropine sensitivity is highy variable. In its salt form, atropine sulfate, it is many times more soluble: >100g can be dissolved in 100ml of water. So 1ml may contain roughly tenfold the lethal dose. There ensued a nationwide scare; 50 000 bottles of Safeway branded Indian tonic water were sacrificed. Only six bottles had been contaminated. They had all been purchased, tops unsealed, from the local Safeway in Hunter’s Tryst. Superficially this looked like the handiwork of a psychopath with a certain distaste for the supermarket brand, and amidst the media furore, it did have some verisimilitude: one of the local papers received a letter from 25 year old, Wayne Smith admitting himself as the sole perpetrator. The forensic scientist, Dr Howard Oakley analysed the contents of the bottles. They all contained a non-lethal dose, 11-74mg/litre of atropine except for the Agutter’s, it contained 103mg/litre. The jam jar holding Mrs Agutter’s drink bore even more sinister results, the atropine concentration was 292mg/L. It would appear Mrs Agutter had in some way outstayed her welcome. But she lived. A miscalculation on the part of the person who had added an extra seasoning of atropine to her drink. According to the numbers she would have had to swallow a can’s worth (330ml) to reach the lethal dose. Thankfully she had taken no more than 50mg. The spotlight suddenly fell on Dr Paul Agutter. He was a lecturer of biochemistry at the nearby University of Napier, which housed a research syndicate specialising in toxicology. CCTV footage had revealed his presence at the Safeway in Hunter’s Tryst and there was eye witness evidence of him having placed bottles onto the shelves. Atropine was also detected by the forensic investigators on a cassete case in his car. Within a matter of two weeks he would be arrested for the attempted murder of his wife. Despite the calculated scheme to delay emergency services and to pass the blame onto a non-existent mass poisoner, he had not accomplished the perfect murder. Was there a motive? Allegedly his best laid plans were for the sake of a mistress, a mature student from Napier. He served seven years of a twelve year sentence. Astonishingly, upon his release from Glenochil prison in 2002, he contacted his then former wife proclaiming his innocence and desire to rejoin her in their Scottish home. A proposition she was not very keen on. Dr Agutter was employed by Manchester University as a lecturer of philosophy and medical ethics. He is currently an associate editor of the online journal Theoretical Biology and Medical Modelling. We will never know the true modus operandi as Dr Agutter never confessed to the crime. Perhaps all this story can afford is weak recompense for the brave followers of the Dry January Campaign. Oddly these sort of incidents never appear in their motivational testimonials. Acknowledgements Emsley J. Molecules of Murder. 2008, Cambridge, RSC Publishing, p.46-67. Lee MR. Solanaceae IV: Atropa belladona, deadly nightshade. J R Coll Physicians Edinb. March 2007; 37: 77-84. Illustrator Edward Wong This blog post is a reproduction of an article published in the The Medical Student Newspaper January issue, 2014 http://www.themedicalstudent.co.uk/  
James Wong
over 6 years ago
29747
3
462

Cerebellar Neuroanatomy

Introduction Examination of the cranial nerves allows one to "view" the brainstem all the way from its rostral to caudal extent. The brainstem can be divided into three levels, the midbrain, the pons and the medulla. The cranial nerves for each of these are: 2 for the midbrain (CN 3 & 4), 4 for the pons (CN 5-8), and 4 for the medulla (CN 9-12). It is important to remember that cranial nerves never cross (except for one exception, the 4th CN) and clinical findings are always on the same side as the cranial nerve involved. Cranial nerve findings when combined with long tract findings (corticospinal and somatosensory) are powerful for localizing lesions in the brainstem. Cranial Nerve 1 Olfaction is the only sensory modality with direct access to cerebral cortex without going through the thalamus. The olfactory tracts project mainly to the uncus of the temporal lobes. Cranial Nerve 2 This cranial nerve has important localizing value because of its "x" axis course from the eye to the occipital cortex. The pattern of a visual field deficit indicates whether an anatomical lesion is pre- or postchiasmal, optic tract, optic radiation or calcarine cortex. Cranial Nerve 3 and 4 These cranial nerves give us a view of the midbrain. The 3rd nerve in particular can give important anatomical localization because it exits the midbrain just medial to the cerebral peduncle. The 3rd nerve controls eye adduction (medial rectus), elevation (superior rectus), depression (inferior rectus), elevation of the eyelid (levator palpebrae superioris), and parasympathetics for the pupil. The 4th CN supplies the superior oblique muscle, which is important to looking down and in (towards the midline). Pontine Level Cranial nerves 5, 6, 7, and 8 are located in the pons and give us a view of this level of the brainstem. Cranial Nerve 6 This cranial nerve innervates the lateral rectus for eye abduction. Remember that cranial nerves 3, 4 and 6 must work in concert for conjugate eye movements; if they don't then diplopia (double vision) results. The medial longitudinal fasciculus (MLF) connects the 6th nerve nucleus to the 3rd nerve nucleus for conjugate movement. Major Oculomotor Gaze Systems Eye movements are controlled by 4 major oculomotor gaze systems, which are tested for on the neurological exam. They are briefly outlined here: Saccadic (frontal gaze center to PPRF (paramedian pontine reticular formation) for rapid eye movements to bring new objects being viewed on to the fovea. Smooth Pursuit (parietal-occipital gaze center via cerebellar and vestibular pathways) for eye movements to keep a moving image centered on the fovea. Vestibulo-ocular (vestibular input) keeps image steady on fovea during head movements. Vergence (optic pathways to oculomotor nuclei) to keep image on fovea predominantly when the viewed object is moved near (near triad- convergence, accommodation and pupillary constriction) Cranial Nerve 5 The entry zone for this cranial nerve is at the mid pons with the motor and main sensory (discriminatory touch) nucleus located at the same level. The axons for the descending tract of the 5th nerve (pain and temperature) descend to the level of the upper cervical spinal cord before they synapse with neurons of the nucleus of the descending tract of the 5th nerve. Second order neurons then cross over and ascend to the VPM of the thalamus. Cranial Nerve 7 This cranial nerve has a motor component for muscles of facial expression (and, don't forget, the strapedius muscle which is important for the acoustic reflex), parasympathetics for tear and salivary glands, and sensory for taste (anterior two-thirds of the tongue). Central (upper motor neuron-UMN) versus Peripheral (lower motor neuron-LMN) 7th nerve weakness- with a peripheral 7th nerve lesion all of the muscles ipsilateral to the affected nerve will be weak whereas with a "central 7th ", only the muscles of the lower half of the face contralateral to the lesion will be weak because the portion of the 7th nerve nucleus that supplies the upper face receives bilateral corticobulbar (UMN) input. Cranial Nerve 8 This nerve is a sensory nerve with two divisions- acoustic and vestibular. The acoustic division is tested by checking auditory acuity and with the Rinne and Weber tests. The vestibular division of this nerve is important for balance. Clinically it be tested with the oculocephalic reflex (Doll's eye maneuver) and oculovestibular reflex (ice water calorics). Medullary Level Cranial nerves 9,10,11, and 12 are located in the medulla and have localizing value for lesions in this most caudal part of the brainstem. Cranial nerves 9 and 10 These two nerves are clinically lumped together. Motor wise, they innervate pharyngeal and laryngeal muscles. Their sensory component is sensation for the pharynx and taste for the posterior one-third of the tongue. Cranial Nerve 11 This nerve is a motor nerve for the sternocleidomastoid and trapezius muscles. The UMN control for the sternocleidomastoid (SCM) is an exception to the rule of the ipsilateral cerebral hemisphere controls the movement of the contralateral side of the body. Because of the crossing then recrossing of the corticobulbar tracts at the high cervical level, the ipsilateral cerebral hemisphere controls the ipsilateral SCM muscle. This makes sense as far as coordinating head movement with body movement if you think about it (remember that the SCM turns the head to the opposite side). So if I want to work with the left side of my body I would want to turn my head to the left so the right SCM would be activated. Cranial Nerve 12 The last of the cranial nerves, CN 12 supplies motor innervation for the tongue. Traps A 6th nerve palsy may be a "false localizing sign". The reason for this is that it has the longest intracranial route of the cranial nerves, therefore it is the most susceptible to pressure that can occur with any cause of increased intracranial pressure.  
Neurologic Exam
over 9 years ago
Preview
2
60

Different types of Inhaler

There are loads of types of inhalers! You need to be able to tell a patient how to use each type, and what type of drugs can go in each type.   With all inhalers, the amount of drug deposited on the mouth and pharynx is very high. Generally it is about 85% (even with good technique). This can improve to about 75% with different types of inhaler.   How a spacer works  
almostadoctor.com - free medical student revision notes
over 6 years ago
Preview
2
258

Applied Anatomy of Submandibular Salivary Gland - Epomedicine

Synonyms: Submaxillary gland (SMG), Mandibular gland Definition: Submandibular glands are one of the major salivary glands comprised of mixed serous and mucous acini and located below the lower border of the ...  
epomedicine.com
over 5 years ago
Preview
2
12

At Children's Medical Center, A Step Toward Treating Long Breaks In A Baby's Esophagus

Connecticut Children's Medical Center, beginning a journey to save the lives of babies born with long breaks in their esophagus, has become the country's first pediatric hospital to acquire a device that can grow the tissue to close the gap in the tube from the baby's mouth to the stomach.  
courant.com
about 5 years ago
Preview
2
45

Tongue Deviation Lesion - Cerebral Artery - GUWS Medical

I. THE OLFACTORY NERVE, the first cranial nerve CN I Figure 13-1 , mediates olfaction smell . It is the only sensory system that has no precortical relay in  
guwsmedical.info
almost 5 years ago
Ee68d223b3228c0fc23fec75b492bb82fb386caa8990229374253328
2
32

Dental Cement For Dental Restorations & Teeth Repair

Are you looking for dentists in Cornwall who can repair or improve the appearance of teeth using dental crowns? As the demand for healthy, attractive teeth increases, the methods and materials employed in restorative dentistry have become progressively more advanced. Non-metallic biomaterials for tooth repair and replacement focuses on the use of biomaterials for a range of applications in tooth repair and, in particular, dental restoration.  
alstonalvin
almost 5 years ago
Preview
2
11

Smile - Wikipedia, the free encyclopedia

A smile is a facial expression formed primarily by flexing the muscles at the sides of the mouth.[1] Some smiles include a contraction of the muscles at the corner of the eyes, an action known as a "Duchenne smile". Smiles performed without the eye contraction can be perceived as "fake". A smile is usually perceived as a cordial gesture, however.  
en.wikipedia.org
over 4 years ago
3
1
43

Is 'Teeth-in-a-Day' for you?

<p>Many current advertisements promise patients 'Teeth-in-a-Day' or 'Teeth-in-an-Hour', offering to replace decayed, infected, or missing teeth with implants and even deliver teeth, all on the same day. While this is a possible treatment option, it is not for everyone. There are a number of limitations and the success depends on proper patient selection, diagnosis, and communication between the surgeon and the restoring dentist. This video discusses immediate implants and immediate teeth and when they may be considered and when they should be avoided.</p>  
H. Ryan Kazemi, Dmd
almost 10 years ago
Preview
1
19

Bechet's Disease

Idiopathic, autoimmune disease, caused by inflammation of venules. Associated with HLA-B51, thought to be triggered by an environmental agent Symptoms include: Recurrent mouth and genital ulcers Uveitis Often accompanied by a symmetrical arthritis of the lower limbs! Non-erosive, and treated with steroids  
almostadoctor.com - free medical student revision notes
over 6 years ago
Www.bmj
1
21

Time to take periodontitis seriously

Periodontitis is the most common chronic inflammatory disease seen in humans, affecting nearly half of adults in the United Kingdom and 60% of those over 65 years.1 It is a major public health problem, causing tooth loss, disability, masticatory dysfunction, and poor nutritional status.2 Periodontitis also compromises speech, reduces quality of life,3 and is an escalating burden to the healthcare economy. In the UK alone it was estimated to cost £2.8bn (€3.4bn; $4.6bn) in 2008,4 not including raised all cause mortality, an association that has been noted in several populations.5 Worryingly, the disease is often silent, being present for decades before diagnosis and treatment. It can leave a substantial pathological footprint on multiple organ systems, as well as the oral cavity.  
bmj.com
over 6 years ago
Www.bmj
1
14

Time to take periodontitis seriously | The BMJ

Periodontitis is the most common chronic inflammatory disease seen in humans, affecting nearly half of adults in the United Kingdom and 60% of those over 65 years.1 It is a major public health problem, causing tooth loss, disability, masticatory dysfunction, and poor nutritional status.2 Periodontitis also compromises speech, reduces quality of life,3 and is an escalating burden to the healthcare economy. In the UK alone it was estimated to cost £2.8bn (€3.4bn; $4.6bn) in 2008,4 not including raised all cause mortality, an association that has been noted in several populations.5 Worryingly, the disease is often silent, being present for decades before diagnosis and treatment. It can leave a substantial pathological footprint on multiple organ systems, as well as the oral cavity. - currently located behind a paywall. Your institution may have access through Athens/Elservier or similar.  
bmj.com
over 6 years ago
Www.bmj
1
15

Time to take periodontitis seriously

Periodontitis is the most common chronic inflammatory disease seen in humans, affecting nearly half of adults in the United Kingdom and 60% of those over 65 years.1 It is a major public health problem, causing tooth loss, disability, masticatory dysfunction, and poor nutritional status.2 Periodontitis also compromises speech, reduces quality of life,3 and is an escalating burden to the healthcare economy. In the UK alone it was estimated to cost £2.8bn (€3.4bn; $4.6bn) in 2008,4 not including raised all cause mortality, an association that has been noted in several populations.5 Worryingly, the disease is often silent, being present for decades before diagnosis and treatment. It can leave a substantial pathological footprint on multiple organ systems, as well as the oral cavity.  
bmj.com
over 6 years ago
Www.bmj
1
15

Time to take periodontitis seriously

Periodontitis is the most common chronic inflammatory disease seen in humans, affecting nearly half of adults in the United Kingdom and 60% of those over 65 years.1 It is a major public health problem, causing tooth loss, disability, masticatory dysfunction, and poor nutritional status.2 Periodontitis also compromises speech, reduces quality of life,3 and is an escalating burden to the healthcare economy. In the UK alone it was estimated to cost £2.8bn (€3.4bn; $4.6bn) in 2008,4 not including raised all cause mortality, an association that has been noted in several populations.5 Worryingly, the disease is often silent, being present for decades before diagnosis and treatment. It can leave a substantial pathological footprint on multiple organ systems, as well as the oral cavity.  
www.bmj.com
over 6 years ago