New to Meducation?
Sign up
Already signed up? Log In
view moderators




Cranial Nerves Examination - Normal

Orientation, Memor Asking questions about month, date, day of week and place tests orientation, which involves not only memory but also attention and language. Three-word recall tests recent memory for which the temporal lobe is important. Remote memory tasks such as naming Presidents, tests not only the temporal lobes but also heteromodal association cortices. Attention-working memory Digit span, spelling backwards and naming months of the year backward test attention and working memory which are frontal lobe functions Judgement-abstract reasoning These frontal lobe functions can be tested by using problem solving, verbal similarities and proverbs Set generation This is a test of verbal fluency and the ability to generate a set of items which are frontal lobe functions. Most individuals can give 10 or more words in a minute. Receptive language Asking the patient to follow commands demonstrates that they understand the meaning of what they have heard or read. It is important to test reception of both spoken and written language. Expressive language In assessing expressive language it is important to note fluency and correctness of content and grammar. This can be accomplished by tasks that require spontaneous speech and writing, naming objects, repetition of sentences, and reading comprehension. Praxis The patient is asked to perform skilled motor tasks without any nonverbal prompting. Skills tested for should involve the face then the limbs. In order to test for praxis the patient must have normal comprehension and intact voluntary movement. Apraxia is typically seen in lesions of the dominant inferior parietal lobe. Gnosis Gnosis is the ability to recognize objects perceived by the senses especially somatosensory sensation. Having the patient (with their eyes closed) identify objects placed in their hand (stereognosis) and numbers written on their hand (graphesthesia) tests parietal lobe sensory perception. Dominant parietal lobe function Tests for dominant inferior parietal lobe function includes right-left orientation, naming fingers, and calculations. Non-dominant parietal lobe function The non-dominant parietal lobe is important for visual spatial sensory tasks such as attending to the contralateral side of the body and space as well as constructional tasks such as drawing a face, clock or geometric figures. Visual recognition Recognition of colors and faces tests visual association cortex (inferior occiptotemporal area). Achromatopsia (inability to distinguish colors), visual agnosia (inability to name or point to a color) and prosopagnosia (inability to identify a familiar faces) result from lesions in this area.  
Neurologic Exam
over 9 years ago

Cerebellar Neuroanatomy

Introduction Examination of the cranial nerves allows one to "view" the brainstem all the way from its rostral to caudal extent. The brainstem can be divided into three levels, the midbrain, the pons and the medulla. The cranial nerves for each of these are: 2 for the midbrain (CN 3 & 4), 4 for the pons (CN 5-8), and 4 for the medulla (CN 9-12). It is important to remember that cranial nerves never cross (except for one exception, the 4th CN) and clinical findings are always on the same side as the cranial nerve involved. Cranial nerve findings when combined with long tract findings (corticospinal and somatosensory) are powerful for localizing lesions in the brainstem. Cranial Nerve 1 Olfaction is the only sensory modality with direct access to cerebral cortex without going through the thalamus. The olfactory tracts project mainly to the uncus of the temporal lobes. Cranial Nerve 2 This cranial nerve has important localizing value because of its "x" axis course from the eye to the occipital cortex. The pattern of a visual field deficit indicates whether an anatomical lesion is pre- or postchiasmal, optic tract, optic radiation or calcarine cortex. Cranial Nerve 3 and 4 These cranial nerves give us a view of the midbrain. The 3rd nerve in particular can give important anatomical localization because it exits the midbrain just medial to the cerebral peduncle. The 3rd nerve controls eye adduction (medial rectus), elevation (superior rectus), depression (inferior rectus), elevation of the eyelid (levator palpebrae superioris), and parasympathetics for the pupil. The 4th CN supplies the superior oblique muscle, which is important to looking down and in (towards the midline). Pontine Level Cranial nerves 5, 6, 7, and 8 are located in the pons and give us a view of this level of the brainstem. Cranial Nerve 6 This cranial nerve innervates the lateral rectus for eye abduction. Remember that cranial nerves 3, 4 and 6 must work in concert for conjugate eye movements; if they don't then diplopia (double vision) results. The medial longitudinal fasciculus (MLF) connects the 6th nerve nucleus to the 3rd nerve nucleus for conjugate movement. Major Oculomotor Gaze Systems Eye movements are controlled by 4 major oculomotor gaze systems, which are tested for on the neurological exam. They are briefly outlined here: Saccadic (frontal gaze center to PPRF (paramedian pontine reticular formation) for rapid eye movements to bring new objects being viewed on to the fovea. Smooth Pursuit (parietal-occipital gaze center via cerebellar and vestibular pathways) for eye movements to keep a moving image centered on the fovea. Vestibulo-ocular (vestibular input) keeps image steady on fovea during head movements. Vergence (optic pathways to oculomotor nuclei) to keep image on fovea predominantly when the viewed object is moved near (near triad- convergence, accommodation and pupillary constriction) Cranial Nerve 5 The entry zone for this cranial nerve is at the mid pons with the motor and main sensory (discriminatory touch) nucleus located at the same level. The axons for the descending tract of the 5th nerve (pain and temperature) descend to the level of the upper cervical spinal cord before they synapse with neurons of the nucleus of the descending tract of the 5th nerve. Second order neurons then cross over and ascend to the VPM of the thalamus. Cranial Nerve 7 This cranial nerve has a motor component for muscles of facial expression (and, don't forget, the strapedius muscle which is important for the acoustic reflex), parasympathetics for tear and salivary glands, and sensory for taste (anterior two-thirds of the tongue). Central (upper motor neuron-UMN) versus Peripheral (lower motor neuron-LMN) 7th nerve weakness- with a peripheral 7th nerve lesion all of the muscles ipsilateral to the affected nerve will be weak whereas with a "central 7th ", only the muscles of the lower half of the face contralateral to the lesion will be weak because the portion of the 7th nerve nucleus that supplies the upper face receives bilateral corticobulbar (UMN) input. Cranial Nerve 8 This nerve is a sensory nerve with two divisions- acoustic and vestibular. The acoustic division is tested by checking auditory acuity and with the Rinne and Weber tests. The vestibular division of this nerve is important for balance. Clinically it be tested with the oculocephalic reflex (Doll's eye maneuver) and oculovestibular reflex (ice water calorics). Medullary Level Cranial nerves 9,10,11, and 12 are located in the medulla and have localizing value for lesions in this most caudal part of the brainstem. Cranial nerves 9 and 10 These two nerves are clinically lumped together. Motor wise, they innervate pharyngeal and laryngeal muscles. Their sensory component is sensation for the pharynx and taste for the posterior one-third of the tongue. Cranial Nerve 11 This nerve is a motor nerve for the sternocleidomastoid and trapezius muscles. The UMN control for the sternocleidomastoid (SCM) is an exception to the rule of the ipsilateral cerebral hemisphere controls the movement of the contralateral side of the body. Because of the crossing then recrossing of the corticobulbar tracts at the high cervical level, the ipsilateral cerebral hemisphere controls the ipsilateral SCM muscle. This makes sense as far as coordinating head movement with body movement if you think about it (remember that the SCM turns the head to the opposite side). So if I want to work with the left side of my body I would want to turn my head to the left so the right SCM would be activated. Cranial Nerve 12 The last of the cranial nerves, CN 12 supplies motor innervation for the tongue. Traps A 6th nerve palsy may be a "false localizing sign". The reason for this is that it has the longest intracranial route of the cranial nerves, therefore it is the most susceptible to pressure that can occur with any cause of increased intracranial pressure.  
Neurologic Exam
over 9 years ago

Vagus nerve

An edited version of my Friday Evening Discouse given to the Royal Institution on 11 April 2008. Abstract: The vagus nerves (cranial nerve X) connects our brainstem to the body, facilitating monitoring and control of many automatic functions; the vagus electrically links our gut, lungs and heart to the base of the brain in an evolutionarily-ancient circuit, similar between mammals and also seen in birds, reptiles, and amphibians. The vagus comprises a major part of the parasympathetic autonomic nervous system, contributing to the motor control of important physiological functions such as heart rate and gut motility. The vagus is also sensory, relaying protective visceral information leading to reflexes like cough and indication of lung volume. The vagus has been described as a neural component of the immune reflex. By monitoring changes in the level of control exerted by the vagus, apparent as beat by beat changes of heart rate, it is possible to indirectly view the effect of pharmaceuticals and disease on brainstem function and neural processes underlying consciousness. The paired vagus nerves of humans have different functions, and stimulation of the left vagus has been shown to be a therapeutic treatment for epilepsy, and may modulate the perception of pain.  
Chris Pomfrett
over 11 years ago