New to Meducation?
Sign up
Already signed up? Log In
view moderators




Spirometry and peak flow video

This video - produced by students at Oxford University Medical School in conjunction with the faculty - demonstrates how to perform the basic respiratory function tests of spirometry and peak flow.<br>It is part of a series of videos covering Respiratory Medicine skills.  
Hussam Rostom
almost 10 years ago
Podcast 5

Capnography for Diagnosis of Pulmonary Embolism; a Useful Tool or a Load of Hot Air?

What benefit does a recent meta-analysis show for the use of ETCO2 in the diagnosis of PE? A review of the results and a refresher on the use of likelihood ratios in clinical practice.
about 8 years ago

Pulmonary Function Tests (PFT): Lesson 2 - Spirometry

A discussion of FEV1, FVC, FEV1/FVC ratio, and the flow volume loop, including how these are used in the diagnosis of various lung diseases, with a particula...  
about 8 years ago
Interpretation of pft4335 thumbnail 4

Interpretation Of Pulmonary Function Tests

A thorough overview with examples.  
over 7 years ago

Step by step guide in reading PFT

pulmonary function test, lung function test, spirometry  
Alice Kim
about 8 years ago

Waveform capnography

Are any of you using continuous waveform capnography on a regular basis? Are you using it on every intubated patient? Codes only? TBI only?...
about 7 years ago

Lung Compliance and Elastance

Lung compliance is the ability of the lungs to expand. Elastance measures the work that has to be exerted by the muscles of inspiration to expand the lungs. Factors affecting these are discussed here.  
about 8 years ago

Pulmonary Function Tests (PFT): Lesson 3 - Lung Volumes

The methods of measuring lung volumes (e.g. helium dilution, nitrogen washout, body plethysmography), and a discussion of how the total lung capacity affects...  
about 8 years ago
Foo20151013 2023 1eqve0g?1444774030

LWW: Case Of The Month - May 2013

This month’s case is by Barbara J. Mroz, M.D. and Robin R. Preston, Ph.D., author of Lippincott’s Illustrated Reviews: .Physiology (ISBN: 9781451175677). For more information, or to purchase your copy, visit:, with 15% off using the discount code: MEDUCATION. The case below is followed by a choice of diagnostic tests. Select the one lettered selection that would be most helpful in diagnosing the patient’s condition. The Case A 54-year-old male 2 pack-per-day smoker presents to your office complaining of cough and shortness of breath (SOB). He reports chronic mild dyspnea on exertion with a daily cough productive of clear mucus. During the past week, his cough has increased in frequency and is now productive of frothy pink-tinged sputum; his dyspnea is worse and he is now short of breath sometimes even at rest. He has had difficulty breathing when lying flat in bed and has spent the past two nights sleeping upright in a recliner. On physical examination, he is a moderately obese male with a blood pressure of 180/80 mm Hg, pulse of 98, and respiratory rate of 22. His temperature is 98.6°F. He becomes winded from climbing onto the exam table. Auscultation of the lungs reveals bilateral wheezing and crackles in the lower posterior lung fields. There is pitting edema in the lower extremities extending up to the knees.  Question Which if the following tests would be most helpful in confirming the correct diagnosis? A. Spirometry B. Arterial blood gas C. Complete blood count D. B-type natriuretic peptide blood test E. Electrocardiogram Answer? The correct answer is B-type natriuretic peptide blood test. Uncomfortable breathing, or feeling short of breath, is a common medical complaint with multiple causes. When approaching a patient with dyspnea, it is helpful to remember that normal breathing requires both a respiratory system that facilitates gas exchange between blood and the atmosphere, and a cardiovascular system that transports O2 and CO¬2 between the lungs and tissues. Dysfunction in either system may cause dyspnea, and wheezing (or bronchospasm) may be present in both cardiac and pulmonary disease. In this patient, the presence of lower extremity edema and orthopnea (discomfort when lying flat) are both suggestive of congestive heart failure (CHF). Elevated blood pressure (systolic of 180) and a cough productive of frothy pink sputum may also be associated symptoms. While wheezing could also be caused by COPD (chronic obstructive pulmonary disease) in the setting of chronic tobacco use, the additional exam findings of lung crackles and edema plus systolic hypertension are all more consistent with CHF. What does the B-type natriuretic peptide blood test tell us? When the left ventricle (LV) fails to maintain cardiac output (CO) at levels required for adequate tissue perfusion, pathways are activated to increase renal fluid retention. A rising plasma volume increases LV preload and sustains CO via the Frank-Starling mechanism. Volume loading also stimulates cardiomyocytes to release atrial- (ANP) and B-type (BNP) natriuretic peptides. BNP has a longer half-life than ANP and provides a convenient marker for volume loading. Plasma BNP levels are measured using immunoassay; levels >100 pg/mL are suggestive of overload resulting in heart failure. How does heart failure cause dyspnea? Increasing venous pressure increases mean capillary hydrostatic pressure and promotes fluid filtration from the vasculature. Excess filtration from pulmonary capillaries causes fluid accumulation within the alveoli (pulmonary edema) and interferes with normal gas exchange, resulting in SOB. Physical signs and symptoms caused by high volume loading include: (1) Lung crackles, caused by fluid within alveoli (2) Orthopnea. Reclining increases pulmonary capillary hydrostatic pressure through gravitational effects, worsening dyspnea when lying flat. (3) Pitting dependent edema caused by filtration from systemic capillaries, an effect also influenced by position (causing edema in the lower legs as in our ambulatory patient or in dependent areas like the sacrum in a bedridden patient). What would an electrocardiogram show? Heart failure can result in LV hypertrophy and manifest as a left axis deviation on an electrocardiogram (ECG), but some patients in failure show a normal ECG. An ECG is not a useful diagnostic tool for dyspnea or CHF per se. Wouldn’t spirometry be more suitable for diagnosing the cause of dyspnea in a smoker? Simple spirometry will readily identify the presence of airflow limitation (obstruction) as a cause of dyspnea. It's a valuable test to perform in any smoker and can establish a diagnosis of chronic obstructive pulmonary disease (COPD) if abnormal. While this wheezing patient is an active smoker who could have airflow obstruction, the additional exam findings above point more to a diagnosis of CHF. What would an arterial blood gas show? An arterial blood gas measures arterial pH, PaCO¬2, and PaO2. While both CHF and COPD could cause derangements in the values measured, these abnormalities would not necessarily be diagnostic (e.g., a low PaO2 could be seen in both conditions, as could an elevated PaCO¬2). Would a complete blood count provide useful information? A complete blood count could prove useful if anemia is a suspected cause of dyspnea. Test result BNP was elevated (842 pg/mL), consistent with CHF. Diuretic treatment was initiated to help reduce volume overload and an afterload reducing agent was started to lower blood pressure and improve systolic function.  
Lippincott Williams & Wilkins
about 9 years ago