New to Meducation?
Sign up
Already signed up? Log In
Foo20151013 2023 1nftkgk?1444774218

Gin & Tonic Anyone?

Written by James Wong · Friday 21st February 2014

It was a Saturday, about tea-time in the quaint village of Athelstaneford, East Lothian. Mrs Alexandria Agutter sat in her cottage, enjoying the delights of the late-summer evening with a glass of gin and tonic. She listlessly sipped from the rather generous pick-me up, no doubt chewing over the happenings of the day. Blast! The taste was much too bitter to her liking. She stood up. And promptly crumpled to the floor in a dizzied heap. It had not been five minutes when a fiery pain gripped her parched throat and in her frenzied turn she watched the bleary room become draped in a gossamery silk.

Sword

How Dame Agatha would approve. But this is no crime novel, on that fateful day, 24th August 1994, poor Mrs Agutter immortalised herself in the history books of forensic medicine; she was the victim of a revered toxin and a vintage one it was too. She had unwittingly imbibed a G&T laced with a classic poison of antiquity.

A clue from the 21st century: do you recall the first Hunger Games film adaption? Those inviting purple-black berries or as Suzanne Collins coined them ‘Nightlock’; a portmanteau of hemlock and Deadly Nightshade. True to the laters’ real life appearance those onscreen fictional fruits played a recurring cameo role.

Deadly Nightshade is a perennial shrub of the family Solanaceae and a relative of the humble potato (a member of the Solanus genus). It is a resident of our native woodland and may be found as far afield as Europe, Africa and Western Asia. The 18th century taxonomist, Carl Linnaeus gave the plant an intriguing name in his great Species Plantarum. The genus Atropa is aptly named after one of the three Greek Fates, Atropos. She is portrayed shearing the thread of a mortal’s life so determining the time and manner of its inevitable end. The Italian species name belladona (beautiful woman) refers to the striking mydriatic effect of the plant on the eye. The name pays homage to Pietro Andre Mattioli, a 16th century physician from Sienna, who was allegedly the first to describe the plant’s use among the Venetian glitterati - ladies of fashion favoured the seductive, doe-eyed look. Belladona is poisonous in its entirety. It was from the plant’s roots in 1831, the German apothecary Heinrich F. G. Mein isolated a white, odourless, crystalline powder: it was (surprise, surprise) atropine.

Atropine is a chiral molecule. From its natural plant source it exists as a single stereoisomer L-atropine, which also happens to display a chiral potency 50-100 times that of its D-enantiomer. As with many other anaesthetic agents it is administered as a racemic mixture. How strange that atropine now sits among the anaesthetist’s armamentarium, its action as a competitive antimuscarinic to counter vagal stimulation belies its dark history. It was a favourite of Roman housewives seeking retribution against their less than faithful husbands and a staple of the witch’s potion cupboard. Little wonder how belladona became known as the Devil’s plant. Curiouser still it’s also the antidote for other poisons, most notably the organophosphates or nerve gases.

On account of its non-selective antagonism, atropine produces a constellation of effects: the inhibition of salivary, lacrimal and sweat glands occurs at low doses; dry mouth and skin are early markers. Pyrexia is a central effect exacerbated by the inability to sweat. Flushing of the face due to skin vessel vasodilatation. Low parasympathetic tone causes a moderate sinus tachycardia. Vision is blurred as the eye becomes dilated, unresponsive to light and accommodation is impaired. Mental disorientation, agitation and ataxia give the impression of drunkedness or a delirium tremens like syndrome. Visual hallucinations, often of butterflies or silk blowing in the wind, are a late feature.

It was then that Mr Agutter, seemingly untroubled by the sight of his wife’s problematic situation, proceeded to leave a message with the local practitioner. How fortunate they were to have the vigilant locum check the answering machine and come round to the Agutter’s lodge accompanied by an ambulance crew. The attending paramedic had the presence of mind to pour the remainder of Mrs Agutter’s beverage into a nearby jam jar, while Mr Agutter handed over what he suspected to be the offending ingredient: the bottle of Indian tonic water. As it soon transpired there were seven other casualties in the surrounding countryside of East Lothian – all involving an encounter with tonic water.

In fact by some ironic twist of fate, two of the victims were the wife and son of Dr Geoffry Sharwood-Smith, a consultant aneasthetist. Obviously very familiar with the typical toxidrome of anticholinergic agents, he was quick to suspect atropine poisoning. Although for a man of his position with daily access to a sweetshop of drugs, it was not something to draw attention to.

Through no small amount of cunning had the poisoner(s) devised the plan. It was elegant; atropine is very bitter. So much so that it can be detected at concentrations of 100 parts per million (0.001%). Those foolish enough to try the berries of belladonna during walks in the woods are often saved by the berry’s sour taste. They are soon spat out. But the quinine in the tonic water was a worthy disguise. The lethal dose for an adult is approximately 90-130mg, however atropine sensitivity is highy variable. In its salt form, atropine sulfate, it is many times more soluble: >100g can be dissolved in 100ml of water. So 1ml may contain roughly tenfold the lethal dose.

There ensued a nationwide scare; 50 000 bottles of Safeway branded Indian tonic water were sacrificed. Only six bottles had been contaminated. They had all been purchased, tops unsealed, from the local Safeway in Hunter’s Tryst. Superficially this looked like the handiwork of a psychopath with a certain distaste for the supermarket brand, and amidst the media furore, it did have some verisimilitude: one of the local papers received a letter from 25 year old, Wayne Smith admitting himself as the sole perpetrator.

The forensic scientist, Dr Howard Oakley analysed the contents of the bottles. They all contained a non-lethal dose, 11-74mg/litre of atropine except for the Agutter’s, it contained 103mg/litre. The jam jar holding Mrs Agutter’s drink bore even more sinister results, the atropine concentration was 292mg/L. It would appear Mrs Agutter had in some way outstayed her welcome. But she lived. A miscalculation on the part of the person who had added an extra seasoning of atropine to her drink. According to the numbers she would have had to swallow a can’s worth (330ml) to reach the lethal dose. Thankfully she had taken no more than 50mg.

The spotlight suddenly fell on Dr Paul Agutter. He was a lecturer of biochemistry at the nearby University of Napier, which housed a research syndicate specialising in toxicology. CCTV footage had revealed his presence at the Safeway in Hunter’s Tryst and there was eye witness evidence of him having placed bottles onto the shelves. Atropine was also detected by the forensic investigators on a cassete case in his car. Within a matter of two weeks he would be arrested for the attempted murder of his wife. Despite the calculated scheme to delay emergency services and to pass the blame onto a non-existent mass poisoner, he had not accomplished the perfect murder. Was there a motive? Allegedly his best laid plans were for the sake of a mistress, a mature student from Napier. He served seven years of a twelve year sentence. Astonishingly, upon his release from Glenochil prison in 2002, he contacted his then former wife proclaiming his innocence and desire to rejoin her in their Scottish home. A proposition she was not very keen on. Dr Agutter was employed by Manchester University as a lecturer of philosophy and medical ethics. He is currently an associate editor of the online journal Theoretical Biology and Medical Modelling.

We will never know the true modus operandi as Dr Agutter never confessed to the crime. Perhaps all this story can afford is weak recompense for the brave followers of the Dry January Campaign. Oddly these sort of incidents never appear in their motivational testimonials.

Acknowledgements

  1. Emsley J. Molecules of Murder. 2008, Cambridge, RSC Publishing, p.46-67.
  2. Lee MR. Solanaceae IV: Atropa belladona, deadly nightshade. J R Coll Physicians Edinb. March 2007; 37: 77-84.

Illustrator Edward Wong

This blog post is a reproduction of an article published in the The Medical Student Newspaper January issue, 2014

http://www.themedicalstudent.co.uk/

Responses

jairusjason
·
Posted 5 days ago
This is a great post. I like this topic. This site has lots of advantage. I found many interesting things from this site. It helps me in many ways. Thanks for posting this again. visit our site
Like
(0)
Respond