New to Meducation?
Sign up
Already signed up? Log In

Category

Foo20151013 2023 zpmqsc?1444774026
3
3929

Assessing Types of Burns and their Severity

This is an excerpt from "Wound Care Made Incredibly Easy! 1st UK Edition" by Julie Vuolo For more information, or to purchase your copy, visit: http://tiny.cc/woundcare. Save 15% (and get free P&P) on this, and a whole host of other LWW titles at http://lww.co.uk when you use the code MEDUCATION when you check out! Introduction A burn is an acute wound caused by exposure to thermal extremes, electricity, caustic chemicals or radiation. The degree of tissue damage caused by a burn depends on the strength of the source and the duration of contact or exposure. Around 250,000 people per year sustain burn injuries in the UK (NBCRC 2001). Because of the specialist care burns require, they are considered here separately from other traumatic wounds. Types of burns Burns can be classified by cause or type. Knowing the type of burn will help you to plan the right care for your patient. Thermal burns The most common type of burn, thermal burns can result from virtually any misuse or mishandling of fire, combustible products, hot fluids and fat or coming into contact with a hot object. Playing with matches, pouring petrol onto a BBQ, spilling hot coffee, touching hot hair straighteners and setting off fireworks are some common examples of ways in which burns occur. Thermal burns can also result from kitchen accidents, house or office fires, car accidents or physical abuse. Although it’s less common, exposure to extreme cold can also cause thermal burns. Electrical burns Electrical burns result from contact with flowing electrical current. Household current, high-voltage transmission lines and lightning are sources of electrical burns. Internal injury is often considerably greater than is apparent externally. Chemical burns Chemical burns most commonly result from contact (skin contact or inhalation) with a caustic agent, such as an acid, an alkali or a vesicant. Radiation burns The most common radiation burn is sunburn, which follows excessive exposure to the sun. Almost all other burns due to radiation exposure occur as a result of radiation treatment or in specific industries that use or process radioactive materials. Assessment Conduct your initial assessment as soon as possible after the burn occurs. First, assess the patient’s ABCs. Then determine the patient’s level of consciousness and mobility. Next, assess the burn, including its size, depth and complexity. Determining size Determine burn size as part of your initial assessment. Typically, burn size is expressed as a percentage of total body surface area (TBSA). The Rule of Nines and the Lund–Browder Classification provide standardised and quick estimates of the percentage of TBSA affected. Memory Jogger To remember the proper sequence for the initial assessment of a burns patient, remember your ABCs and add D and E. Airway – Assess the patient’s airway, remove any obstruction and treat any obstructive condition. Breathing – Observe the motion of the patient’s chest. Auscultate the depth, rate and characteristics of the patient’s breathing. Circulation – Palpate the patient’s pulse at the carotid artery and then at the distal pulse points in the wrist, posterior tibial area and foot. Loss of distal pulse may indicate shock or constriction of an extremity. Disability – Assess the patient’s level of consciousness and ability to function before attempting to move or transfer them. Expose – Remove burned clothing from burned areas of the patient’s body and thoroughly examine the skin beneath.  
Lippincott Williams & Wilkins
over 8 years ago
Foo20151013 2023 e2a8vo?1444774258
7
348

Monkey See, Monkey Do.

So you're sitting in a bus when you see a baby smile sunnily and gurgle at his mother. Your automatic response? You smile too. You're jogging in the park, when you see a guy trip over his shoelaces and fall while running. Your knee jerk reaction? You wince. Even though you're completely fine and unscathed yourself. Or, to give a more dramatic example; you're watching Titanic for the umpteenth time and as you witness Jack and Rose's final moments together, you automatically reach for a tissue and wipe your tears in whole hearted sympathy ( and maybe blow your nose loudly, if you're an unattractive crier like yours truly). And here the question arises- why? Why do we experience the above mentioned responses to situations that have nothing to do with us directly? As mere passive observers, what makes us respond at gut level to someone else's happiness or pain, delight or excitement, disgust or fear? In other words, where is this instinctive response to other people's feelings and actions that we call empathy coming from? Science believes it may have discovered the answer- mirror neurons. In the early 1990s, a group of scientists (I won't bore you with the details of who, when and where) were performing experiments on a bunch of macaque monkeys, using electrodes attached to their brains. Quite by accident, it was discovered that when the monkey saw a scientist holding up a peanut, it fired off the same motor neurons in its brain that would fire when the monkey held up a peanut itself. And that wasn't all. Interestingly, they also found that these motor neurons were very specific in their actions. A mirror neuron that fired when the monkey grasped a peanut would also fire only when the experimenter grasped a peanut, while a neuron that fired when the monkey put a peanut in its mouth would also fire only when the experimenter put a peanut in his own mouth. These motor neurons came to be dubbed as 'mirror neurons'. It was a small leap from monkeys to humans. And with the discovery of a similar, if not identical mirror neuron system in humans, the studies, hypotheses and theories continue to build. The strange thing is that mirror neurons seem specially designed to respond to actions with clear goals- whether these actions reach us through sight, sound, smell etc, it doesn't matter. A quick example- the same mirror neurons will fire when we hop on one leg, see someone hopping, hear someone hopping or hear or read the word 'hop'. But they will NOT respond to meaningless gestures, random or pointless sounds etc. Instead they may well be understanding the intentions behind the related action. This has led to a very important hypothesis- the 'action understanding' ability of mirror neurons. Before the discovery of mirror neurons, scientists believed our ability to understand each other, to interpret and respond to another's feeling or actions was the result of a logical thought process and deduction. However, if this 'action understanding' hypothesis is proved right, then it would mean that we respond to each other by feeling, instead of thinking. For instance, if someone smiles at you, it automatically fires up your mirror neurons for smiling. They 'understand the action' and induce the same sensation within you that is associated with smiling. You don't have to think about what the other person intends by this gesture. Your smile flows thoughtlessly and effortlessly in return. Which brings us to yet another important curve- if mirror neurons are helping us to decode facial expressions and actions, then it stands to reason that those gifted people who are better at such complex social interpretations must be having a more active mirror neuron system.(Imagine your mom's strained smile coupled with the glint in her eye after you've just thrown a temper tantrum in front of a roomful of people...it promises dire retribution my friends. Trust me.) Then does this mean that people suffering from disorders such as autism (where social interactions are difficult) have a dysfunctional or less than perfect mirror neuron system in some way? Some scientists believe it to be so. They call it the 'broken mirror hypothesis', where they claim that malfunctioning mirror neurons may be responsible for an autistic individual's inability to understand the intention behind other people's gestures or expressions. Such people may be able to correctly identify an emotion on someone's face, but they wouldn't understand it's significance. From observing other people, they don't know what it feels like to be sad, angry, surprised or scared. However, the jury is still out on this one folks. The broken mirror hypothesis has been questioned by others who are still skeptical about the very existence of these wonder neurons, or just how it is that these neurons alone suffered such a developmental hit when the rest of the autistic brain is working just dandy? Other scientists argue that while mirror neurons may help your brain to understand a concept, they may not necessarily ENCODE that concept. For instance, babies understand the meaning behind many actions without having the motor ability to perform them. If this is true, then an autistic person's mirror neurons are perfectly fine...they were just never responsible for his lack of empathy in the first place. Slightly confused? Curious to find out more about these wunderkinds of the human brain? Join the club. Whether you're an passionate believer in these little fellas with their seemingly magical properties or still skeptical, let me add to your growing interest with one parting shot- since imitation appears to be the primary function of mirror neurons, they might well be partly responsible for our cultural evolution! How, you ask? Well, since culture is passed down from one generation to another through sharing, observation followed by imitation, these neurons are at the forefront of our lifelong learning from those around us. Research has found that mirror neurons kick in at birth, with infants just a few minutes old sticking their tongues out at adults doing the same thing. So do these mirror neurons embody our humanity? Are they responsible for our ability to put ourselves in another person's shoes, to empathize and communicate our fellow human beings? That has yet to be determined. But after decades of research, one thing is for sure-these strange cells haven't yet ceased to amaze and we definitely haven't seen the last of them. To quote Alice in Wonderland, the tale keeps getting "curiouser and curiouser"!  
Huda Qadir
over 7 years ago
Preview
0
5

APOSEC protein concentrate reduces damage in case of spinal cord injuries

In tests conducted on animals, the APOSEC protein concentrate extracted from white blood cells has reduced the severity of damage after an accident involving spinal cord injuries when the...  
medicalnewstoday.com
over 6 years ago
Preview
0
11

Approach to drowning | EMBlog Mayo Clinic

Author: Katie Greger, M.D. This is a Mayo Clinic Emergency Medicine Residency Interesting Case Presentation using the Pecha Kucha fo…  
emblog.mayo.edu
over 6 years ago
Preview
0
10

It was a freak accident

Stream It was a freak accident by BMJ talk medicine from desktop or your mobile device  
feeds.bmj.com
over 6 years ago
Preview
0
15

Hypothermia and Drowning Pearls - emdocs

Winter is coming...well maybe not yet, but you never know when you will see your next drowning or hypothermic patient will enter your ED, so be prepared!  
emdocs.net
over 6 years ago
Preview
0
2

PREHOSPITAL EXTRICATION TIMES

Car accidents with trapped victims can be incredibly frustrating. There is often very little one can do until the rescue services achieve extrication. Sometimes, because of limited patient access, all you can achieve during extrication is some very basic airway management, pain relief through a crap IV and ‘neck stabilisation’ while waiting for the firemen to fully extricate. Everyone on scene knows how every minute counts, and it feels like it is taking forever. A British study in EMJ looks at how long the various stages of extrication takes.  
scancrit.com
over 6 years ago
Preview
0
2

Patrolling the Outback

We fly long distances out here on patrol in the Outback. Whilst airborne we can get diverted to another emergency. You might takeoff for an uncomplicated interhospital transfer of a stable patient, then get called to a sudden car accident on a remote road in the middle of nowehere. The aircraft have changed over the…  
prehospitalmed.com
over 6 years ago
Www.bmj
0
22

NHS is “drowning in bureaucracy” and lacks good leaders, says scathing report

The NHS is “drowning in bureaucracy,” is beset with chronic problems that successive governments have ignored, and has a “chronic shortage of good leaders” to apply the “common sense” needed to sort it all out, says the long awaited report by the Conservative peer Stuart Rose into leadership in the NHS in England.1  
feeds.bmj.com
over 6 years ago
Preview
0
17

Me and my new brain: Brain injury in young people - BBC News

Snowboarding teacher Charlie Elmore had an accident on the slopes four years ago in which she sustained a traumatic brain injury.  
bbc.co.uk
over 6 years ago